Skip to main content

Advertisement

Log in

The Biology of Zinc Transport in Mammary Epithelial Cells: Implications for Mammary Gland Development, Lactation, and Involution

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Zinc plays a critical role in a vast array of cellular functions including gene transcription, protein translation, cell proliferation, differentiation, bioenergetics, and programmed cell death. The mammary gland depends upon tight coordination of these processes during development and reproduction for optimal expansion, differentiation, and involution. For example, zinc is required for activation of matrix metalloproteinases, intracellular signaling cascades such as MAPK and PKC, and the activation of both mitochondrial-mediated apoptosis and lysosomal-mediated cell death. In addition to functional needs, during lactation the mammary gland must balance providing optimal zinc for cellular requirements with the need to secrete a substantial amount of zinc into milk to meet the requirements of the developing neonate. Finally, the mammary gland exhibits the most profound example of programmed cell death, which is driven by both apoptotic and lysosomal-mediated cell death. Two families of zinc-specific transporters regulate zinc delivery for these diverse functions. Members of the ZIP family of zinc transporters (ZIP1–14) import zinc into the cytoplasm from outside the cell or from subcellular organelles, while members of the ZnT family (ZnT1–10) export zinc from the cytoplasm. Recently, the ion channel transient receptor potential mucolipin 1 (TRPML1) has also been implicated in zinc transport. Herein, we review our current understanding of the molecular mechanisms through which mammary epithelial cells utilize zinc with a focus on the transport of zinc into discrete subcellular organelles for specific cellular functions during mammary gland development, lactation, and involution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TRPML1:

Transient receptor potential mucolipin 1

References

  1. Sternlicht MD, Kouros-Mehr H, Lu P, et al. Hormonal and local control of mammary branching morphogenesis. Differentiation. 2006;74(7):365–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993;73(1):79–118.

    CAS  PubMed  Google Scholar 

  3. Chesters JK, Petrie L, Vint H. Specificity and timing of the Zn2+ requirement for DNA synthesis by 3 T3 cells. Exp Cell Res. 1989;184(2):499–508.

    CAS  PubMed  Google Scholar 

  4. Chesters JK, Boyne R. Nature of the Zn2+ requirement for DNA synthesis by 3 T3 cells. Exp Cell Res. 1991;192(2):631–4.

    CAS  PubMed  Google Scholar 

  5. Ishikawa Y, Kudo H, Suzuki S, et al. Down regulation by a low-zinc diet in gene expression of rat prostatic thymidylate synthase and thymidine kinase. Nutr Metab (Lond). 2008;5:12.

    Google Scholar 

  6. Lefebvre D, Boney CM, Ketelslegers JM, et al. Inhibition of insulin-like growth factor-I mitogenic action by zinc chelation is associated with a decreased mitogen-activated protein kinase activation in RAT-1 fibroblasts. FEBS Lett. 1999;449(2–3):284–8.

    CAS  PubMed  Google Scholar 

  7. Hirano T, Murakami M, Fukada T, et al. Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv Immunol. 2008;97:149–76.

    CAS  PubMed  Google Scholar 

  8. Guo B, Yang M, Liang D, et al. Cell apoptosis induced by zinc deficiency in osteoblastic MC3T3-E1 cells via a mitochondrial-mediated pathway. Mol Cell Biochem. 2012;361(1–2):209–16.

    CAS  PubMed  Google Scholar 

  9. Murgia C, Vespignani I, Cerase J, et al. Cloning, expression, and vesicular localization of zinc transporter Dri 27/ZnT4 in intestinal tissue and cells. Am J Physiol. 1999;277(6 Pt 1):G1231–9.

    CAS  PubMed  Google Scholar 

  10. Jeong J, Eide DJ. The SLC39 family of zinc transporters. Mol Aspects Med. 2013;34(2–3):612–9.

    CAS  PubMed  Google Scholar 

  11. Gaither LA, Eide DJ. Functional expression of the human hZIP2 zinc transporter. J Biol Chem. 2000;275(8):5560–4.

    CAS  PubMed  Google Scholar 

  12. Gaither LA, Eide DJ. The human ZIP1 transporter mediates zinc uptake in human K562 erythroleukemia cells. J Biol Chem. 2001;276(25):22258–64.

    CAS  PubMed  Google Scholar 

  13. Ohana E, Hoch E, Keasar C, et al. Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter. J Biol Chem. 2009;284(26):17677–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Bouron A, Oberwinkler J. Contribution of calcium-conducting channels to the transport of zinc ions. Pflugers Arch 2013.

  15. Abe K, Puertollano R. Role of TRP channels in the regulation of the endosomal pathway. Physiology (Bethesda). 2011;26(1):14–22.

    CAS  Google Scholar 

  16. Krezel A, Maret W. Zinc-buffering capacity of a eukaryotic cell at physiological pZn. J Biol Inorg Chem. 2006;11(8):1049–62.

    CAS  PubMed  Google Scholar 

  17. Colvin RA, Holmes WR, Fontaine CP, et al. Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics. 2010;2(5):306–17.

    CAS  PubMed  Google Scholar 

  18. Maret W. Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc. Exp Gerontol. 2008;43(5):363–9.

    CAS  PubMed  Google Scholar 

  19. Dempsey C, McCormick NH, Croxford TP, et al. Marginal maternal zinc deficiency in lactating mice reduces secretory capacity and alters milk composition. J Nutr. 2012;142(4):655–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Lopez V, Kelleher SL. Zip6-attenuation promotes epithelial-to-mesenchymal transition in ductal breast tumor (T47D) cells. Exp Cell Res. 2010;316(3):366–75.

    CAS  PubMed  Google Scholar 

  21. Hogstrand C, Kille P, Ackland ML, et al. A Mechanism for Epithelial-Mesenchymal Transition and Anoikis Resistance in Breast Cancer Triggered by Zinc Channel ZIP6 and Signal Transducer and Activator of Transcription 3 (STAT3). Biochem J 2013.

  22. Kelleher SL, Velasquez V, Croxford TP, et al. Mapping the zinc-transporting system in mammary cells: Molecular analysis reveals a phenotype-dependent zinc-transporting network during lactation. J Cell Physiol. 2012;227(4):1761–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Huang L, Gitschier J. A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet. 1997;17(3):292–7.

    CAS  PubMed  Google Scholar 

  24. Chowanadisai W, Lönnerdal B, Kelleher SL. Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem. 2006;281(51):39699–707.

    CAS  PubMed  Google Scholar 

  25. McManaman JL, Reyland ME, Thrower EC. Secretion and fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas and the salivary gland. J Mammary Gland Biol Neoplasia. 2006;11(3–4):249–68.

    PubMed  Google Scholar 

  26. Clermont Y, Xia L, Rambourg A, et al. Transport of casein submicelles and formation of secretion granules in the Golgi apparatus of epithelial cells of the lactating mammary gland of the rat. Anat Rec. 1993;235(3):363–73.

    CAS  PubMed  Google Scholar 

  27. Smith JJ, Nickerson SC, Keenan TW. Metabolic energy and cytoskeletal requirements for synthesis and secretion by acini from rat mammary gland-II. Intracellular transport and secretion of protein and lactose. Int J Biochem. 1982;14(2):99–109.

    CAS  PubMed  Google Scholar 

  28. Chat S, Layani S, Mahaut C, et al. Characterisation of the potential SNARE proteins relevant to milk product release by mouse mammary epithelial cells. Eur J Cell Biol. 2011;90(5):401–13.

    CAS  PubMed  Google Scholar 

  29. Truchet S, Ollivier-Bousquet M. Mammary gland secretion: hormonal coordination of endocytosis and exocytosis. Animal. 2009;3(12):1733–42.

    CAS  PubMed  Google Scholar 

  30. Shennan DB. Calcium transport by mammary secretory cells: mechanisms underlying transepithelial movement. Cell Mol Biol Lett. 2008;13(4):514–25.

    CAS  PubMed  Google Scholar 

  31. Kelleher SL, Lonnerdal B. Zn transporter levels and localization change throughout lactation in rat mammary gland and are regulated by Zn in mammary cells. J Nutr. 2003;133(11):3378–85.

    CAS  PubMed  Google Scholar 

  32. Kelleher SL, Lonnerdal B. Zip3 plays a major role in zinc uptake into mammary epithelial cells and is regulated by prolactin. Am J Physiol Cell Physiol. 2005;288(5):C1042–7.

    CAS  PubMed  Google Scholar 

  33. Qian L, Lopez V, Seo YA, et al. Prolactin regulates ZNT2 expression through the JAK2/STAT5 signaling pathway in mammary cells. Am J Physiol Cell Physiol. 2009;297(2):C369–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. McCormick NH, Kelleher SL. ZnT4 provides zinc to zinc-dependent proteins in the trans-Golgi network critical for cell function and Zn export in mammary epithelial cells. Am J Physiol Cell Physiol. 2012;303(3):C291–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Lasry I, Seo YA, Ityel H, et al. A dominant negative heterozygous G87R mutation in the zinc transporter, ZnT-2 (SLC30A2), results in transient neonatal zinc deficiency. J Biol Chem. 2012;287(35):29348–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Suzuki T, Ishihara K, Migaki H, et al. Zinc transporters, ZnT5 and ZnT7, are required for the activation of alkaline phosphatases, zinc-requiring enzymes that are glycosylphosphatidylinositol-anchored to the cytoplasmic membrane. J Biol Chem. 2005;280(1):637–43.

    CAS  PubMed  Google Scholar 

  37. Miranda JG, Weaver AL, Qin Y, et al. New alternately colored FRET sensors for simultaneous monitoring of Zn2+ in multiple cellular locations. PLoS ONE. 2012;7(11):e49371.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Qin Y, Miranda JG, Stoddard CI, et al. Direct Comparison of a Genetically Encoded Sensor and Small Molecule Indicator: Implications for Quantification of Cytosolic Zn(2+). ACS Chem Biol 2013.

  39. Park JG, Qin Y, Galati DF, et al. New sensors for quantitative measurement of mitochondrial Zn(2+). ACS Chem Biol. 2012;7(10):1636–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Qin Y, Dittmer PJ, Park JG, et al. Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors. Proc Natl Acad Sci U S A. 2011;108(18):7351–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Tomat E, Nolan EM, Jaworski J, et al. Organelle-specific zinc detection using zinpyr-labeled fusion proteins in live cells. J Am Chem Soc. 2008;130(47):15776–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Seo YA, Lopez V, Kelleher SL. A histidine-rich motif mediates mitochondrial localization of ZnT2 to modulate mitochondrial function. Am J Physiol Cell Physiol. 2011;300(6):C1479–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Berg JM, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science. 1996;271(5252):1081–5.

    CAS  PubMed  Google Scholar 

  44. Langmade SJ, Ravindra R, Daniels PJ, et al. The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem. 2000;275(44):34803–9.

    CAS  PubMed  Google Scholar 

  45. Guo L, Lichten LA, Ryu MS, et al. STAT5-glucocorticoid receptor interaction and MTF-1 regulate the expression of ZnT2 (Slc30a2) in pancreatic acinar cells. Proc Natl Acad Sci U S A. 2010;107(7):2818–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Westin G, Schaffner W. A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J. 1988;7(12):3763–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Kimura T, Itoh N, Sone T, et al. Role of metal-responsive transcription factor-1 (MTF-1) in EGF-dependent DNA synthesis in primary hepatocytes. J Cell Biochem. 2006;99(2):485–94.

    CAS  PubMed  Google Scholar 

  48. Hansson A. Extracellular zinc ions induces mitogen-activated protein kinase activity and protein tyrosine phosphorylation in bombesin-sensitive Swiss 3T3 fibroblasts. Arch Biochem Biophys. 1996;328(2):233–8.

    CAS  PubMed  Google Scholar 

  49. Parker PJ, Coussens L, Totty N, et al. The complete primary structure of protein kinase C–the major phorbol ester receptor. Science. 1986;233(4766):853–9.

    CAS  PubMed  Google Scholar 

  50. Csermely P, Szamel M, Resch K, et al. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes. J Biol Chem. 1988;263(14):6487–90.

    CAS  PubMed  Google Scholar 

  51. McCormick N, Velasquez V, Finney L, et al. X-ray fluorescence microscopy reveals accumulation and secretion of discrete intracellular zinc pools in the lactating mouse mammary gland. PLoS ONE. 2010;5(6):e11078.

    PubMed Central  PubMed  Google Scholar 

  52. Taylor KM, Hiscox S, Nicholson RI, et al. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal. 2012;5(210):ra11.

    PubMed Central  PubMed  Google Scholar 

  53. Hogstrand C, Kille P, Nicholson RI, et al. Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med. 2009;15(3):101–11.

    CAS  PubMed  Google Scholar 

  54. Lue HW, Yang X, Wang R, et al. LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS ONE. 2011;6(11):e27720.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Zhang Y, Gonzalez RM, Zangar RC. Protein secretion in human mammary epithelial cells following HER1 receptor activation: influence of HER2 and HER3 expression. BMC Cancer. 2011;11:69.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Murakami M, Hirano T. Intracellular zinc homeostasis and zinc signaling. Cancer Sci. 2008;99(8):1515–22.

    CAS  PubMed  Google Scholar 

  57. Taylor KM. A distinct role in breast cancer for two LIV-1 family zinc transporters. Biochem Soc Trans. 2008;36(Pt 6):1247–51.

    CAS  PubMed  Google Scholar 

  58. Mor M, Beharier O, Levy S, et al. ZnT-1 enhances the activity and surface expression of T-type calcium channels through activation of Ras-ERK signaling. Am J Physiol Cell Physiol. 2012;303(2):C192–203.

    CAS  PubMed  Google Scholar 

  59. Taniguchi M, Fukunaka A, Hagihara M, et al. Essential role of the zinc transporter ZIP9/SLC39A9 in regulating the activations of Akt and Erk in B-cell receptor signaling pathway in DT40 cells. PLoS ONE. 2013;8(3):e58022.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Nishida K, Hasegawa A, Nakae S, et al. Zinc transporter Znt5/Slc30a5 is required for the mast cell-mediated delayed-type allergic reaction but not the immediate-type reaction. J Exp Med. 2009;206(6):1351–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Mailleux AA, Overholtzer M, Brugge JS. Lumen formation during mammary epithelial morphogenesis: insights from in vitro and in vivo models. Cell Cycle. 2008;7(1):57–62.

    CAS  PubMed  Google Scholar 

  62. Alam S, Kelleher SL. Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutrients. 2012;4(8):875–903.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Lopez V, Kelleher SL. Zinc transporter-2 (ZnT2) variants are localized to distinct subcellular compartments and functionally transport zinc. Biochem J. 2009;422(1):43–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Besecker B, Bao S, Bohacova B, et al. The human zinc transporter SLC39A8 (Zip8) is critical in zinc-mediated cytoprotection in lung epithelia. Am J Physiol Lung Cell Mol Physiol. 2008;294(6):L1127–36.

    CAS  PubMed  Google Scholar 

  65. McCawley LJ, Matrisian LM. Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol. 2001;13(5):534–40.

    CAS  PubMed  Google Scholar 

  66. Wiseman BS, Sternlicht MD, Lund LR, et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol. 2003;162(6):1123–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Kang T, Nagase H, Pei D. Activation of membrane-type matrix metalloproteinase 3 zymogen by the proprotein convertase furin in the trans-Golgi network. Cancer Res. 2002;62(3):675–81.

    CAS  PubMed  Google Scholar 

  68. Cao J, Rehemtulla A, Pavlaki M, et al. Furin directly cleaves proMMP-2 in the trans-Golgi network resulting in a nonfunctioning proteinase. J Biol Chem. 2005;280(12):10974–80.

    CAS  PubMed  Google Scholar 

  69. Podsiadlo P, Komiyama T, Fuller RS, et al. Furin inhibition by compounds of copper and zinc. J Biol Chem. 2004;279(35):36219–27.

    CAS  PubMed  Google Scholar 

  70. Huang L, Kirschke CP, Zhang Y, et al. The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J Biol Chem. 2005;280(15):15456–63.

    CAS  PubMed  Google Scholar 

  71. Cragg RA, Christie GR, Phillips SR, et al. A novel zinc-regulated human zinc transporter, hZTL1, is localized to the enterocyte apical membrane. J Biol Chem. 2002;277(25):22789–97.

    CAS  PubMed  Google Scholar 

  72. Kelleher SL, Lopez V, Lönnerdal B, et al. Zip3 (Slc39a3) functions in zinc reuptake from the alveolar lumen in lactating mammary gland. Am J Physiol Regul Integr Comp Physiol. 2009;297(1):R194–201.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Závodszky P, Johansen JT, Hvidt A. Hydrogen-exchange study of the conformational stability of human carbonic-anhydrase B and its metallocomplexes. Eur J Biochem. 1975;56(1):67–72.

    PubMed  Google Scholar 

  74. Karhumaa P, Leinonen J, Parkkila S, et al. The identification of secreted carbonic anhydrase VI as a constitutive glycoprotein of human and rat milk. Proc Natl Acad Sci U S A. 2001;98(20):11604–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Parkkila S, Parkkila AK, Lehtola J, et al. Salivary carbonic anhydrase protects gastroesophageal mucosa from acid injury. Dig Dis Sci. 1997;42(5):1013–9.

    CAS  PubMed  Google Scholar 

  76. Thatcher BJ, Doherty AE, Orvisky E, et al. Gustin from human parotid saliva is carbonic anhydrase VI. Biochem Biophys Res Commun. 1998;250(3):635–41.

    CAS  PubMed  Google Scholar 

  77. Groth C, Sasamura T, Khanna MR, et al. Protein trafficking abnormalities in Drosophila tissues with impaired activity of the ZIP7 zinc transporter Catsup. Development. 2013;140(14):3018–27.

    CAS  PubMed  Google Scholar 

  78. Lönnerdal B, Stanislowski AG, Hurley LS. Isolation of a low molecular weight zinc binding ligand from human milk. J Inorg Biochem. 1980;12(1):71–8.

    PubMed  Google Scholar 

  79. Lönnerdal B, Hoffman B, Hurley LS. Zinc and copper binding proteins in human milk. Am J Clin Nutr. 1982;36(6):1170–6.

    PubMed  Google Scholar 

  80. Harzer G, Kauer H. Binding of zinc to casein. Am J Clin Nutr. 1982;35(5):981–7.

    CAS  PubMed  Google Scholar 

  81. Itsumura N, Inamo Y, Okazaki F, et al. Compound Heterozygous Mutations in SLC30A2/ZnT2 Results in Low Milk Zinc Concentrations: A Novel Mechanism for Zinc Deficiency in a Breast-Fed Infant. PLoS ONE. 2013;8(5):e64045.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Piletz JE, Ganschow RE. Zinc deficiency in murine milk underlies expression of the lethal milk (lm) mutation. Science. 1978;199(4325):181–3.

    CAS  PubMed  Google Scholar 

  83. Michalczyk A, Varigos G, Catto-Smith A, et al. Analysis of zinc transporter, hZnT4 (Slc30A4), gene expression in a mammary gland disorder leading to reduced zinc secretion into milk. Hum Genet. 2003;113(3):202–10.

    CAS  PubMed  Google Scholar 

  84. Marti A, Jehn B, Costello E, et al. Protein kinase A and AP-1 (c-Fos/JunD) are induced during apoptosis of mouse mammary epithelial cells. Oncogene. 1994;9(4):1213–23.

    CAS  PubMed  Google Scholar 

  85. Kreuzaler PA, Staniszewska AD, Li W, et al. Stat3 controls lysosomal-mediated cell death in vivo. Nat Cell Biol. 2011;13(3):303–9.

    CAS  PubMed  Google Scholar 

  86. Arnandis T, Ferrer-Vicens I, García-Trevijano ER, et al. Calpains mediate epithelial-cell death during mammary gland involution: mitochondria and lysosomal destabilization. Cell Death Differ. 2012;19(9):1536–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Stein T, Salomonis N, Gusterson BA. Mammary gland involution as a multi-step process. J Mammary Gland Biol Neoplasia. 2007;12(1):25–35.

    PubMed  Google Scholar 

  88. Baxter FO, Neoh K, Tevendale MC. The beginning of the end: death signaling in early involution. J Mammary Gland Biol Neoplasia. 2007;12(1):3–13.

    PubMed  Google Scholar 

  89. Watson CJ. Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res. 2006;8(2):203.

    PubMed Central  PubMed  Google Scholar 

  90. Sunderman FW. The influence of zinc on apoptosis. Ann Clin Lab Sci. 1995;25(2):134–42.

    CAS  PubMed  Google Scholar 

  91. Lee SJ, Cho KS, Koh JY. Oxidative injury triggers autophagy in astrocytes: the role of endogenous zinc. Glia. 2009;57(12):1351–61.

    PubMed  Google Scholar 

  92. Bender T, Martinou JC. Where killers meet–permeabilization of the outer mitochondrial membrane during apoptosis. Cold Spring Harb Perspect Biol. 2013;5(1):a011106.

    PubMed  Google Scholar 

  93. Foghsgaard L, Wissing D, Mauch D, et al. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol. 2001;153(5):999–1010.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Park MH, Lee SJ, Byun HR, et al. Clioquinol induces autophagy in cultured astrocytes and neurons by acting as a zinc ionophore. Neurobiol Dis. 2011;42(3):242–51.

    CAS  PubMed  Google Scholar 

  95. Hwang JJ, Lee SJ, Kim TY, et al. Zinc and 4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H2O2 in cultured hippocampal neurons. J Neurosci. 2008;28(12):3114–22.

    CAS  PubMed  Google Scholar 

  96. Cho KS, Yoon YH, Choi JA, et al. Induction of autophagy and cell death by tamoxifen in cultured retinal pigment epithelial and photoreceptor cells. Investig Ophthalmol Vis Sci. 2012;53(9):5344–53.

    CAS  Google Scholar 

  97. Hwang JJ, Kim HN, Kim J, et al. Zinc(II) ion mediates tamoxifen-induced autophagy and cell death in MCF-7 breast cancer cell line. Biometals. 2010;23(6):997–1013.

    CAS  PubMed  Google Scholar 

  98. Falcón-Pérez JM, Dell’Angelica EC. Zinc transporter 2 (SLC30A2) can suppress the vesicular zinc defect of adaptor protein 3-depleted fibroblasts by promoting zinc accumulation in lysosomes. Exp Cell Res. 2007;313(7):1473–83.

    PubMed Central  PubMed  Google Scholar 

  99. Iguchi K, Usui S, Inoue T, et al. High-level expression of zinc transporter-2 in the rat lateral and dorsal prostate. J Androl. 2002;23(6):819–24.

    CAS  PubMed  Google Scholar 

  100. Palmiter RD, Cole TB, Findley SD. ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J. 1996;15(8):1784–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Kelleher SL, Lönnerdal B. Mammary gland copper transport is stimulated by prolactin through alterations in Ctr1 and Atp7A localization. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1181–91.

    CAS  PubMed  Google Scholar 

  102. Kukic I, Lee JK, Coblentz J, et al. Zinc-dependent lysosomal enlargement in TRPML1-deficient cells involves MTF-1 transcription factor and ZnT4 (Slc30a4) transporter. Biochem J. 2013;451(2):155–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Burke MA, Hutter D, Reshamwala RP, et al. Cathepsin L plays an active role in involution of the mouse mammary gland. Dev Dyn. 2003;227(3):315–22.

    CAS  PubMed  Google Scholar 

  104. Clarkson RW, Watson CJ. Microarray analysis of the involution switch. J Mammary Gland Biol Neoplasia. 2003;8(3):309–19.

    PubMed  Google Scholar 

  105. Helminen HJ, Ericsson JL, Niemi M. Lysosomal changes during castration-induced prostatic involution in the rat. Acta Pathol Microbiol Scand A. 1970;78(4):493–4.

    CAS  PubMed  Google Scholar 

  106. Helminen HJ, Ericsson JL. Quantitation of lysosomal enzyme changes during enforced mammary gland involution. Exp Cell Res. 1970;60(3):419–26.

    CAS  PubMed  Google Scholar 

  107. Aydemir TB, Liuzzi JP, McClellan S, et al. Zinc transporter ZIP8 (SLC39A8) and zinc influence IFN-gamma expression in activated human T cells. J Leukoc Biol. 2009;86(2):337–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Dong XP, Cheng X, Mills E, et al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature. 2008;455(7215):992–6.

    CAS  PubMed  Google Scholar 

  109. Eichelsdoerfer JL, Evans JA, Slaugenhaupt SA, et al. Zinc dyshomeostasis is linked with the loss of mucolipidosis IV-associated TRPML1 ion channel. J Biol Chem. 2010;285(45):34304–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Zalewski PD, Forbes IJ, Betts WH. Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem J. 1993;296(Pt 2):403–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Stennicke HR, Salvesen GS. Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem. 1997;272(41):25719–23.

    CAS  PubMed  Google Scholar 

  112. Truong-Tran AQ, Carter J, Ruffin RE, et al. The role of zinc in caspase activation and apoptotic cell death. Biometals. 2001;14(3–4):315–30.

    CAS  PubMed  Google Scholar 

  113. Roscioli E, Hamon R, Lester S, et al. Zinc-rich inhibitor of apoptosis proteins (IAPs) as regulatory factors in the epithelium of normal and inflamed airways. Biometals. 2013;26(2):205–27.

    CAS  PubMed  Google Scholar 

  114. Ranaldi G, Ferruzza S, Canali R, et al. Intracellular zinc is required for intestinal cell survival signals triggered by the inflammatory cytokine TNFα. J Nutr Biochem. 2013;24(6):967–76.

    CAS  PubMed  Google Scholar 

  115. Terman A, Gustafsson B, Brunk UT. The lysosomal-mitochondrial axis theory of postmitotic aging and cell death. Chem Biol Interact. 2006;163(1–2):29–37.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Veronica Lopez and Vanessa Velasquez for technical assistance. This work was supported by R01HD058614, R01HD058614-S1, W82XWH-07-1-0692 and W81XWH-09-1-356 to SLK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shannon L. Kelleher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCormick, N.H., Hennigar, S.R., Kiselyov, K. et al. The Biology of Zinc Transport in Mammary Epithelial Cells: Implications for Mammary Gland Development, Lactation, and Involution. J Mammary Gland Biol Neoplasia 19, 59–71 (2014). https://doi.org/10.1007/s10911-013-9314-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-013-9314-4

Keywords

Navigation