Skip to main content

Advertisement

Log in

Notch Signaling in Breast Cancer and Tumor Angiogenesis: Cross-Talk and Therapeutic Potentials

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Notch signaling is an evolutionarily conserved pathway that regulates numerous physiological processes. Disruption of Notch has been implicated in multiple tumor types. Evidence from in vitro experiments, mouse models and human tumor samples indicates that Notch plays a predominantly oncogenic role in breast cancer and interacts with other pathways involved in tumorigenesis. In addition, Notch signaling is required for physiological angiogenesis and may promote tumor angiogenesis. A variety of strategies for blocking Notch signaling, in particular γ-secretase inhibition, are discussed as potential therapies for breast cancer and tumor angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

Dll4:

Delta-like 4

Jag1:

Jagged1

RAM:

RBP-jκ associated module

N-ICD:

Notch intracellular domain

TACE:

TNFα converting enzyme

RBP:

re-combination-signal binding protein

CSL:

CBF1, Suppressor of Hairless or Lag-1

Hes:

hairy/enhancer of split

Hey:

hairy/enhancer of split related with YRPW motif

GSI:

γ-secretase inhibitor

HIF:

hypoxia inducible factor

VEGF:

vascular endothelial growth factor

MMTV:

mouse mammary tumor virus

APC:

adenomatous polyposis coli

References

  1. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999;284(5415):770–6.

    Article  PubMed  CAS  Google Scholar 

  2. Blaumueller CM, Qi H, Zagouras P, Artavanis-Tsakonas S. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 1997;90(2):281–91.

    Article  PubMed  CAS  Google Scholar 

  3. Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 2003;3(10):756–67.

    Article  PubMed  CAS  Google Scholar 

  4. Wu L, Griffin JD. Modulation of Notch signaling by mastermind-like (MAML) transcriptional co-activators and their involvement in tumorigenesis. Semin Cancer Biol 2004;14(5):348–56.

    Article  PubMed  CAS  Google Scholar 

  5. Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 2003;194(3):237–55.

    Article  PubMed  CAS  Google Scholar 

  6. Kageyama R, Ohtsuka T. The Notch–Hes pathway in mammalian neural development. Cell Res 1999;9(3):179–88.

    Article  PubMed  CAS  Google Scholar 

  7. Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M. The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 2004;18(8):901–11.

    Article  PubMed  CAS  Google Scholar 

  8. Martinez Arias A, Zecchini V, Brennan K. CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr Opin Genet Dev 2002;12(5):524–33.

    Article  PubMed  Google Scholar 

  9. Shi S, Stanley P. Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc Natl Acad Sci USA 2003;100(9):5234–9.

    Article  PubMed  CAS  Google Scholar 

  10. Haltiwanger RS, Stanley P. Modulation of receptor signaling by glycosylation: fringe is an O-fucose-beta1,3-N-acetylglucosaminyltransferase. Biochim Biophys Acta 2002;1573(3):328–35.

    PubMed  CAS  Google Scholar 

  11. Lai EC. Protein degradation: four E3s for the notch pathway. Curr Biol 2002;12(2):R74–8.

    Article  PubMed  CAS  Google Scholar 

  12. Callahan R, Egan SE. Notch signaling in mammary development and oncogenesis. J Mammary Gland Biol Neoplasia 2004;9(2):145–63.

    Article  PubMed  Google Scholar 

  13. Leong KG, Karsan A. Recent insights into the role of Notch signaling in tumorigenesis. Blood 2005.

  14. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991;66(4):649–61.

    Article  PubMed  CAS  Google Scholar 

  15. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004;306(5694):269–71.

    Article  PubMed  CAS  Google Scholar 

  16. Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene 2003;22(42):6598–608.

    Article  PubMed  CAS  Google Scholar 

  17. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414(6859):105–11.

    Article  PubMed  CAS  Google Scholar 

  18. van Es JH, Clevers H. Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. Trends Mol Med 2005;11(11):496–502.

    Article  PubMed  Google Scholar 

  19. van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 2005;435(7044):959–63.

    Article  PubMed  Google Scholar 

  20. Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. Nature 2005;435(7044):964–8.

    Article  PubMed  CAS  Google Scholar 

  21. Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif 2003;36 Suppl 1:59–72.

    Article  PubMed  CAS  Google Scholar 

  22. Okano H, Imai T, Okabe M. Musashi: a translational regulator of cell fate. J Cell Sci 2002;115(Pt 7):1355–9.

    PubMed  CAS  Google Scholar 

  23. Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS. A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 2005;277(2):443–56.

    Article  PubMed  CAS  Google Scholar 

  24. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2(1):38–47.

    Article  PubMed  CAS  Google Scholar 

  25. Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005;9(5):617–28.

    Article  PubMed  CAS  Google Scholar 

  26. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3(10):721–32.

    Article  PubMed  CAS  Google Scholar 

  27. Jogi A, Ora I, Nilsson H, Lindeheim A, Makino Y, Poellinger L, Axelson H, Pahlman S. Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci USA 2002;99(10):7021–6.

    Article  PubMed  CAS  Google Scholar 

  28. Soares R, Balogh G, Guo S, Gartner F, Russo J, Schmitt F. Evidence for the notch signaling pathway on the role of estrogen in angiogenesis. Mol Endocrinol 2004;18(9):2333–43.

    Article  PubMed  CAS  Google Scholar 

  29. Chin MT, Maemura K, Fukumoto S, Jain MK, Layne MD, Watanabe M, Hsieh CM, Lee ME. Cardiovascular basic helix loop helix factor 1, a novel transcriptional repressor expressed preferentially in the developing and adult cardiovascular system. J Biol Chem 2000;275(9):6381–7.

    Article  PubMed  CAS  Google Scholar 

  30. Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A, Osborne BA, Gottipati S, Aster JC, Hahn WC, Rudolf M, Siziopikou K, Kast WM, Miele L. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 2002;8(9):979–86.

    Article  PubMed  CAS  Google Scholar 

  31. Kiaris H, Politi K, Grimm LM, Szabolcs M, Fisher P, Efstratiadis A, Artavanis-Tsakonas S. Modulation of notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am J Pathol 2004;165(2):695–705.

    PubMed  CAS  Google Scholar 

  32. Fitzgerald K, Harrington A, Leder P. Ras pathway signals are required for notch-mediated oncogenesis. Oncogene 2000;19(37):4191–8.

    Article  PubMed  CAS  Google Scholar 

  33. Masuda S, Kumano K, Shimizu K, Imai Y, Kurokawa M, Ogawa S, Miyagishi M, Taira K, Hirai H, Chiba S. Notch1 oncoprotein antagonizes TGF-beta/Smad-mediated cell growth suppression via sequestration of coactivator p300. Cancer Sci 2005;96(5):274–82.

    Article  PubMed  CAS  Google Scholar 

  34. Sun Y, Lowther W, Kato K, Bianco C, Kenney N, Strizzi L, Raafat D, Hirota M, Khan NI, Bargo S, Jones B, Salomon D, Callahan R. Notch4 intracellular domain binding to Smad3 and inhibition of the TGF-beta signaling. Oncogene 2005;24(34):5365–74.

    Article  PubMed  CAS  Google Scholar 

  35. Blokzijl A, Dahlqvist C, Reissmann E, Falk A, Moliner A, Lendahl U, Ibanez CF. Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol 2003;163(4):723–8.

    Article  PubMed  CAS  Google Scholar 

  36. Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. Embo J 2004;23(5):1155–65.

    Article  PubMed  CAS  Google Scholar 

  37. Espinosa L, Ingles-Esteve J, Aguilera C, Bigas A. Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways. J Biol Chem 2003;278(34):32227–35.

    Article  PubMed  CAS  Google Scholar 

  38. Uyttendaele H, Soriano JV, Montesano R, Kitajewski J. Notch4 and Wnt-1 proteins function to regulate branching morphogenesis of mammary epithelial cells in an opposing fashion. Dev Biol 1998;196(2):204–17.

    Article  PubMed  CAS  Google Scholar 

  39. Politi K, Feirt N, Kitajewski J. Notch in mammary gland development and breast cancer. Semin Cancer Biol 2004;14(5):341–7.

    Article  PubMed  CAS  Google Scholar 

  40. Gallahan D, Callahan R. Mammary tumorigenesis in feral mice: identification of a new int locus in mouse mammary tumor virus (Czech II)-induced mammary tumors. J Virol 1987;61(1): 66–74.

    PubMed  CAS  Google Scholar 

  41. Gallahan D, Callahan R. The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene 1997;14(16):1883–90.

    Article  PubMed  CAS  Google Scholar 

  42. Jhappan C, Gallahan D, Stahle C, Chu E, Smith GH, Merlino G, Callahan R. Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev 1992;6(3):345–55.

    Article  PubMed  CAS  Google Scholar 

  43. Gallahan D, Jhappan C, Robinson G, Hennighausen L, Sharp R, Kordon E, Callahan R, Merlino G, Smith GH. Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res 1996;56(8):1775–85.

    PubMed  CAS  Google Scholar 

  44. Dievart A, Beaulieu N, Jolicoeur P. Involvement of Notch1 in the development of mouse mammary tumors. Oncogene 1999;18(44):5973–81.

    Article  PubMed  CAS  Google Scholar 

  45. Imatani A, Callahan R. Identification of a novel NOTCH-4/INT-3 RNA species encoding an activated gene product in certain human tumor cell lines. Oncogene 2000;19(2):223–31.

    Article  PubMed  CAS  Google Scholar 

  46. Raafat A, Bargo S, Anver MR, Callahan R. Mammary development and tumorigenesis in mice expressing a truncated human Notch4/Int3 intracellular domain (h-Int3sh). Oncogene 2004;23(58):9401–7.

    Article  PubMed  CAS  Google Scholar 

  47. Parr C, Watkins G, Jiang WG. The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med 2004;14(5):779–86.

    PubMed  CAS  Google Scholar 

  48. Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 2005;65(18):8530–7.

    Article  PubMed  CAS  Google Scholar 

  49. Pece S, Serresi M, Santolini E, Capra M, Hulleman E, Galimberti V, Zurrida S, Maisonneuve P, Viale G, Di Fiore PP. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol 2004;167(2):215–21.

    Article  PubMed  CAS  Google Scholar 

  50. Siziopikou K, Jang MS, Miao H, Miele L. Notch signaling in ductal carcinoma in situ of the breast. In: Proc Am Assoc Cancer Res; 2002; 2002.

  51. Chen Y, Fischer WH, Gill GN. Regulation of the ERBB-2 promoter by RBPJkappa and NOTCH. J Biol Chem 1997;272(22):14110–4.

    Article  PubMed  CAS  Google Scholar 

  52. Sakamaki T, Liu M, Katiyar S, Rao M, Li S, Yin Y, Dettin L, Pestell RG, Glazer RI. ErbB2 activation of Notch1 signaling in breast cancer. In: Proc Am Assoc Cancer Res; 2005; 2005. p. 869.

  53. Shawber CJ, Kitajewski J. Notch function in the vasculature: insights from zebrafish, mouse and man. Bioessays 2004;26(3):225–34.

    Article  PubMed  CAS  Google Scholar 

  54. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith GH, Stark KL, Gridley T. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 2000;14(11):1343–52.

    PubMed  CAS  Google Scholar 

  55. Limbourg FP, Takeshita K, Radtke F, Bronson RT, Chin MT, Liao JK. Essential role of endothelial Notch1 in angiogenesis. Circulation 2005;111(14):1826–32.

    Article  PubMed  CAS  Google Scholar 

  56. Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J. Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 1996;122(7):2251–9.

    PubMed  CAS  Google Scholar 

  57. Uyttendaele H, Ho J, Rossant J, Kitajewski J. Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci USA 2001;98(10):5643–8.

    Article  PubMed  CAS  Google Scholar 

  58. Carlson TR, Yan Y, Wu X, Lam MT, Tang GL, Beverly LJ, Messina LM, Capobianco AJ, Werb Z, Wang R. Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. Proc Natl Acad Sci USA 2005;102(28):9884–9.

    Article  PubMed  CAS  Google Scholar 

  59. Shutter JR, Scully S, Fan W, Richards WG, Kitajewski J, Deblandre GA, Kintner CR, Stark KL. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 2000;14(11):1313–8.

    PubMed  CAS  Google Scholar 

  60. Mailhos C, Modlich U, Lewis J, Harris A, Bicknell R, Ish-Horowicz D. Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation 2001;69(2–3):135–44.

    Article  PubMed  CAS  Google Scholar 

  61. Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, Costa L, Henrique D, Rossant J. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 2004;18(20):2474–8.

    Article  PubMed  CAS  Google Scholar 

  62. Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T. Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev 2004;18(20):2469–73.

    Article  PubMed  CAS  Google Scholar 

  63. Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM, Murphy AJ, Adams NC, Lin HC, Holash J, Thurston G, Yancopoulos GD. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 2004;101(45):15949–54.

    Article  PubMed  CAS  Google Scholar 

  64. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380(6573):435–9.

    Article  PubMed  CAS  Google Scholar 

  65. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea KS, Powell-Braxton L, Hillan KJ, Moore MW. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996;380(6573):439–42.

    Article  PubMed  CAS  Google Scholar 

  66. Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP, Fairman RM, Velazquez OC, Herlyn M. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 2003;23(1):14–25.

    Article  PubMed  Google Scholar 

  67. Patel NS, Li JL, Generali D, Poulsom R, Cranston DW, Harris AL. Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res 2005;65(19):8690–7.

    Article  PubMed  CAS  Google Scholar 

  68. Williams CK, Li JL, Murga M, Harris AL, Tosato G. Upregulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood 2005.

  69. Henderson AM, Wang SJ, Taylor AC, Aitkenhead M, Hughes CC. The basic helix-loop-helix transcription factor HESR1 regulates endothelial cell tube formation. J Biol Chem 2001;276(9):6169–76.

    Article  PubMed  CAS  Google Scholar 

  70. Taylor KL, Henderson AM, Hughes CC. Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc Res 2002;64(3):372–83.

    Article  PubMed  CAS  Google Scholar 

  71. Leong KG, Hu X, Li L, Noseda M, Larrivee B, Hull C, Hood L, Wong F, Karsan A. Activated Notch4 inhibits angiogenesis: role of beta 1-integrin activation. Mol Cell Biol 2002;22(8):2830–41.

    Article  PubMed  CAS  Google Scholar 

  72. Noseda M, Chang L, McLean G, Grim JE, Clurman BE, Smith LL, Karsan A. Notch activation induces endothelial cell cycle arrest and participates in contact inhibition: role of p21Cip1 repression. Mol Cell Biol 2004;24(20):8813–22.

    Article  PubMed  CAS  Google Scholar 

  73. Sainson RC, Aoto J, Nakatsu MN, Holderfield M, Conn E, Koller E, Hughes CC. Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. Faseb J 2005;19(8):1027–9.

    PubMed  CAS  Google Scholar 

  74. Zeng Q, Li S, Chepeha DB, Giordano TJ, Li J, Zhang H, Polverini PJ, Nor J, Kitajewski J, Wang CY. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 2005;8(1):13–23.

    Article  PubMed  CAS  Google Scholar 

  75. Nickoloff BJ, Qin JZ, Chaturvedi V, Denning MF, Bonish B, Miele L. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-kappaB and PPARgamma. Cell Death Differ 2002;9(8):842–55.

    Article  PubMed  CAS  Google Scholar 

  76. Kopan R, Goate A. A common enzyme connects notch signaling and Alzheimer's disease. Genes Dev 2000;14(22):2799–806.

    Article  PubMed  CAS  Google Scholar 

  77. Curry CL, Reed LL, Golde TE, Miele L, Nickoloff BJ, Foreman KE. Gamma secretase inhibitor blocks Notch activation and induces apoptosis in Kaposi's sarcoma tumor cells. Oncogene 2005.

  78. Paris D, Quadros A, Patel N, DelleDonne A, Humphrey J, Mullan M. Inhibition of angiogenesis and tumor growth by beta and gamma-secretase inhibitors. Eur J Pharmacol 2005;514(1): 1–15.

    Article  PubMed  CAS  Google Scholar 

  79. Haruki N, Kawaguchi KS, Eichenberger S, Massion PP, Olson S, Gonzalez A, Carbone DP, Dang TP. Dominant-negative Notch3 receptor inhibits mitogen-activated protein kinase pathway and the growth of human lung cancers. Cancer Res 2005;65(9):3555–61.

    Article  PubMed  CAS  Google Scholar 

  80. Itoh F, Itoh S, Goumans MJ, Valdimarsdottir G, Iso T, Dotto GP, Hamamori Y, Kedes L, Kato M, ten Dijke Pt P. Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. Embo J 2004;23(3):541–51.

    Article  PubMed  CAS  Google Scholar 

  81. Chappell WH, Green TD, Spengeman JD, McCubrey JA, Akula SM, Bertrand FE. Increased protein expression of the PTEN tumor suppressor in the presence of constitutively active Notch-1. Cell Cycle 2005;4(10).

  82. Kamakura S, Oishi K, Yoshimatsu T, Nakafuku M, Masuyama N, Gotoh Y. Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nat Cell Biol 2004;6(6):547–54.

    Article  PubMed  CAS  Google Scholar 

  83. Sjolund J, Manetopoulos C, Stockhausen MT, Axelson H. The Notch pathway in cancer: differentiation gone awry. Eur J Cancer 2005;41(17):2620–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the lab of A.L.H. is funded by Cancer Research UK and the Sixth Framework Program of the European Union (Angiotargeting). W.S. is a Rhodes Scholar. We would like to thank Drs. Ji-Liang Li, Richard Sainson, Laura Harrington, John Moore and Ms. Cassin Williams for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian L. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, W., Harris, A.L. Notch Signaling in Breast Cancer and Tumor Angiogenesis: Cross-Talk and Therapeutic Potentials. J Mammary Gland Biol Neoplasia 11, 41–52 (2006). https://doi.org/10.1007/s10911-006-9011-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-006-9011-7

Keywords

Navigation