Skip to main content
Log in

Classification of nodal pockets in many-electron wave functions via machine learning

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Accurate treatment of electron correlation in quantum chemistry requires solving the many-electron problem. If the nodal surface of a many-electron wave function is available even in an approximate form, the fixed-node diffusion Monte Carlo (FNDMC) approach from the family of quantum Monte Carlo methods can be successfully used for this purpose. The issue of description and classification of nodal surfaces of fermionic wave functions becomes central for understanding the basic properties of many-electron wave functions and for the control of accuracy and computational efficiency of FNDMC computations. In this work, we approach the problem of automatic classification of nodal pockets of many-electron wave functions. We formulate this problem as that of binary classification and apply a number of techniques from the machine learning literature. We apply these techniques on a range of atoms of light elements and demonstrate varying degrees of success. We observe that classifiers with relatively simple geometry perform poorly on the classification task; methods based on a random collection of tree-based classifiers appear to perform best. We conclude with thoughts on computational challenges and complexity associated with applying these techniques to heavier atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hohenberg P., Kohn W.: Phys. Rev. B 136, B864 (1964)

    Article  Google Scholar 

  2. Kohn W., Sham L.J.: Phys. Rev. B 140, 1133 (1965)

    Article  Google Scholar 

  3. Roothaan C.C.J.: Rev. Mod. Phys. 23, 69 (1951)

    Article  CAS  Google Scholar 

  4. Hammond B.L., Lester W.A. Jr., Reynolds P.J.: Monte Carlo Methods in Ab Initio Quantum Chemistry: Quantum Monte Carlo for Molecules. World Scientific, Hackensack (1994)

    Book  Google Scholar 

  5. Austin B.M., Zubarev D.Yu., Lester W.A. Jr.: Chem. Rev. 112, 263 (2012)

    Article  CAS  Google Scholar 

  6. Grossman J.C.: J. Chem. Phys. 117, 1434 (2002)

    Article  CAS  Google Scholar 

  7. Ceperley D.M.: J. Stat. Phys. 63, 1237 (1991)

    Article  Google Scholar 

  8. Bajdich M., Wagner L.K., Drobny G., Mitas L., Schmidt K.E.: Phys. Rev. Lett. 96, 130201 (2006)

    Article  CAS  Google Scholar 

  9. Glauser W.A., Brown W.R., Lester W.A., Bressanini D., Hammond B.L., Koszykowski M.L.: J. Chem. Phys. 97, 9200 (1992)

    Article  CAS  Google Scholar 

  10. Bressanini D., Reynolds P.J.: Phys. Rev. Lett. 95, 110201 (2005)

    Article  Google Scholar 

  11. Aspuru-Guzik A., Salomon-Ferrer R., Austin B., Perusquia-Flores R., Griffin M.A., Oliva R.A., Skinner D., Domin D., Lester W.A. Jr.: J. Comput. Chem. 26, 856 (2005)

    Article  CAS  Google Scholar 

  12. Jastrow R.: Phys. Rev. 98, 1479 (1955)

    Article  Google Scholar 

  13. The R Project for Statistical Computing, http://www.r-project.org/

  14. R caret package, http://cran.r-project.org/web/packages/caret/index.html

  15. Cortes C., Vapnik V.: Mach. Learn. 20, 237 (1995)

    Google Scholar 

  16. Breiman L., Friedman J.H., Olshen R.A., Stone C.J.: Classification and Regression Trees. Wadsworth & Brooks/Cole Advanced Books, Monterey (1984)

    Google Scholar 

  17. Hastie T., Tibshirani R., Friedman J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2001)

    Google Scholar 

  18. Cover T.M., Hart P.E.: IEEE Trans. Inform. Theory 13, 21 (1967)

    Article  Google Scholar 

  19. Breiman L.: Mach. Learn. 45, 1 (2001)

    Google Scholar 

  20. Ho T.: IEEE Trans. Patt. Anal. Mach. Intell. 20, 832 (1998)

    Article  Google Scholar 

  21. R SuperLearner package, http://cran.r-project.org/web/packages/SuperLearner/index.html

  22. Friedman J.H.: Stochastic Gradient Boosting. Stanford University, Stanford (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Lester Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeDell, E., Prabhat, Zubarev, D.Y. et al. Classification of nodal pockets in many-electron wave functions via machine learning. J Math Chem 50, 2043–2050 (2012). https://doi.org/10.1007/s10910-012-0019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0019-5

Keywords

Navigation