Skip to main content
Log in

Solutions of the Schrödinger equation in the tridiagonal representation with the noncentral electric dipole plus a novel angle-dependent component

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A noncentral ring-shaped potential is proposed in which the noncentral electric dipole and a novel angle-dependent component are included, the radial part is selected as the Coulomb potential or the harmonic oscillator potential. The exact solution of the Schrödinger equation with this potential is investigated by working in a complete square integrable basis that supports a tridiagonal matrix representation of the wave operator. The resulting three-term recursion relation for the expansion coefficients of the wavefunctions (both angular and radial) are presented. The angular/radial wavefunction is written in terms of the Jacobi/Laguerre polynomials. The discrete spectrum of the bound states is obtained by diagonalization of the radial recursion relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schiff L.I.: Quantum Mechanics. McGraw-Hill, New York (1955)

    Google Scholar 

  2. Makarov A.A., Smorodinsky J.A., Valiev K.H., Winternitz P.: Nuovo Cimento A 52, 1061 (1967)

    Article  Google Scholar 

  3. Hautot A.: J. Math. Phys. 14, 1320 (1973)

    Article  Google Scholar 

  4. Khare A., Bhaduri R.K.: Am. J. Phys. 62, 1008 (1994)

    Article  Google Scholar 

  5. Kibler M., Mardoyan L.G., Pogosyan G.S.: Int. J. Quant. Chem. 52, 1301 (1994)

    Article  CAS  Google Scholar 

  6. Kibler M., Lamot G.H., Winternitz P.: Int. J. Quant. Chem. 43, 625 (1992)

    Article  Google Scholar 

  7. Hartmann H.: Theor. Chim. Acta 24, 201 (1972)

    Article  CAS  Google Scholar 

  8. Hartmann H., Schuck R., Radtke J.: Theor. Chim. Acta 46, 1 (1976)

    Article  Google Scholar 

  9. Hartmann H., Schuch D.: Int. J. Quant. Chem. 18, 125 (1980)

    Article  CAS  Google Scholar 

  10. Quesne C.: J. Phys. A Math. Gen. 21, 3093 (1988)

    Article  Google Scholar 

  11. Kibler M., Negadi T.: Int. J. Quant. Chem. 26, 405 (1984)

    Article  CAS  Google Scholar 

  12. Kibler M., Negadi T.: Theor. Chim. Acta 66, 31 (1984)

    Article  CAS  Google Scholar 

  13. Schulze-Halberg A., Zamora-Gallardo E., Peña J.J.: Int. J. Quant. Chem. 109, 1464 (2009)

    Article  CAS  Google Scholar 

  14. Cooper F., Khare A., Sukhatme U.: Phys. Rep. 251, 267 (1995)

    Article  CAS  Google Scholar 

  15. Dutt R., Khare A., Sukhatme U.P.: Am. J. Phys. 56, 163 (1988)

    Article  Google Scholar 

  16. Infeld L., Hull T.D.: Rev Mod Phys. 23, 21 (1951)

    Article  Google Scholar 

  17. Dong S.H.: Factorization Method in Quantum Mechanics. Springer, Netherlands (2007)

    Google Scholar 

  18. Nikiporov A.F., Uvarov V.B.: Special Functions of Mathematical Physics. Birkhauser, Basle (1988)

    Google Scholar 

  19. Yaşuk F., Berkdemir C., Berkdemir A.: J. Phys. A Math. Gen. 38, 6579 (2005)

    Article  Google Scholar 

  20. Aktaş M., Sever R.: J. Math. Chem. 37, 139 (2005)

    Article  Google Scholar 

  21. Fermi E., Teller E.: Phys. Rev. 72, 399 (1947)

    Article  CAS  Google Scholar 

  22. Wightman A.S.: Phys. Rev. 77, 521 (1950)

    Article  CAS  Google Scholar 

  23. Fox K., Turner J.E.: J. Chem. Phys. 45, 1142 (1966)

    Article  CAS  Google Scholar 

  24. Brown W.B., Robers R.E.: J. Chem. Phys. 46, 2006 (1967)

    Article  CAS  Google Scholar 

  25. Coon S.A., Holstein B.R.: Am. J. Phys. 70, 513 (2002)

    Article  CAS  Google Scholar 

  26. Jaramillo B., Núñez-Yépez H.N., Salas-Brito A.L.: Phys. Lett. A 374, 2707 (2010)

    Article  CAS  Google Scholar 

  27. Alhaidari A.D.: J. Phys. A Math. Gen. 38, 3409 (2005)

    Article  Google Scholar 

  28. Huang-Fu G.Q., Zhang M.C.: J. Math. Phys. 52, 042108 (2011)

    Article  Google Scholar 

  29. Alhaidari A.D.: Ann. Phys. 323, 1709 (2008)

    Article  CAS  Google Scholar 

  30. Alhaidari A.D., Bahlouli H.: Phys. Rev. Lett. 100, 110401 (2008)

    Article  CAS  Google Scholar 

  31. Berkdemir C.: J. Math. Chem 46, 139 (2009)

    Article  CAS  Google Scholar 

  32. Alhaidari A.D.: J. Phys. A Math. Theor. 40, 14843 (2007)

    Article  CAS  Google Scholar 

  33. Bahlouli H., Alhaidari A.D.: Phys. Scr. 81, 025008 (2010)

    Article  Google Scholar 

  34. Bahlouli H., Abdelmonem M.S., Nasser I.M.: Phys. Scr. 82, 065005 (2010)

    Article  Google Scholar 

  35. Alhaidari A.D.: Ann. Phys. 317, 152 (2005)

    Article  CAS  Google Scholar 

  36. Mie G.: Ann. Phys. (Leipzig) 11, 657 (1903)

    Google Scholar 

  37. Erkoç Ş., Sever R.: Phys. Rev. D 30, 2117 (1984)

    Article  Google Scholar 

  38. Calogero F.: J. Math. Phys. 10, 2191 (1969)

    Article  Google Scholar 

  39. Sutherland B.: J. Math. Phys. 12, 246 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Cang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang-Fu, GQ., Zhang, MC. Solutions of the Schrödinger equation in the tridiagonal representation with the noncentral electric dipole plus a novel angle-dependent component. J Math Chem 50, 1988–2000 (2012). https://doi.org/10.1007/s10910-012-0015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0015-9

Keywords

Navigation