Skip to main content
Log in

Hydration effects on the reaction with an open-shell transition state: QM/MM-ER study for the dehydration reaction of alcohol in hot water

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The reaction mechanism for the dehydration of 1,4-butanediol in hot water has been investigated by means of the hybrid quantum mechanical/molecular mechanical approach combined with the theory of energy representation (QM/MM-ER). We have assumed that the proton transfers along the hydrogen bonds of the water molecules catalyze the reaction, where the transition state (TS) forms a singlet biradical electronic structure. It has been revealed by the simulation that the biradical electronic state at the TS changes to zwitterionic structure in solution due to the hydration of the polar solvent. Such the electronic structure change gives rise to the substantial stabilization of the TS in hot water. As a result, the water-catalytic path becomes more favorable in aqueous solution than another possible path that proceeds without proton transfers as opposed to the reaction mechanism in the gas phase. Furthermore, the activation free energy computed by the present method is in excellent agreement with the experimental result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rossky P.J., Simon J.D.: Nature 370, 263 (1994)

    Article  CAS  Google Scholar 

  2. Takahashi H., Matubayasi N., Nitta T., Nakahara M.: J. Chem. Phys. 121, 3989 (2004)

    Article  CAS  Google Scholar 

  3. Nagai Y., Matubayasi N., Nakahara M.: Bull. Chem. Soc. Jpn. 77, 691 (2004)

    Article  CAS  Google Scholar 

  4. Takahashi H., Hisaoka S., Nitta T.: Chem. Phys. Lett. 363, 80 (2002)

    Article  CAS  Google Scholar 

  5. Szabo A., Ostlund N.S.: Modern Quantum Chemistry. Macmillan, New York (1982)

    Google Scholar 

  6. Allen M.P., Tildesley D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1987)

    Google Scholar 

  7. Frenkel D., Smit B.: Understanding Molecular Simulation from Algorithms to Applications, Computational Science Series, vol 1. Academic Press, New York (2002)

    Google Scholar 

  8. J. Gao, M.A. Thompson (eds.), Combined Quantum Mechanical and Molecular Mechanical Methods (American Chemical Society, Washington, DC, 1998)

    Google Scholar 

  9. M.F. Ruiz-Lopez (ed.), Combined QM/MM calculations in chemistry and biochemistry. J. Mol. Struct. (THEOCHEM) 632 (2003)

  10. Matubayasi N., Nakahara M.: J. Chem. Phys. 113, 6070 (2000)

    Article  CAS  Google Scholar 

  11. N. Matubayasi, M. Nakahara, J. Chem. Phys. 117, 3605 (2002); 118, 2446 (2003)

    Google Scholar 

  12. Matubayasi N., Nakahara M.: J. Chem. Phys. 119, 9686 (2003)

    Article  CAS  Google Scholar 

  13. Hansen J.P., McDonald I.R.: Theory of Simple Liquids. Academic Press, London (1986)

    Google Scholar 

  14. Hirose K., Ono T., Fujimoto Y., Tsukamoto S.: First-Principles Calculations in Real-Space Formalism. Imperial College Press, London (2005)

    Google Scholar 

  15. Chelikowsky J.R., Troullier N., Saad Y.: Phys. Rev. Lett. 72, 1240 (1994)

    Article  CAS  Google Scholar 

  16. Chelikowsky J.R., Troullier N., Wu K., Saad Y.: Phys. Rev. B 50, 11355 (1994)

    Article  CAS  Google Scholar 

  17. Jing X., Troullier N., Dean D., Binggeli N., Chelikowsky J.R., Wu K., Saad Y.: Phys. Rev. B 50, 12234 (1994)

    Article  CAS  Google Scholar 

  18. Hohenberg P., Kohn W.: Phys. Rev. B 136, 864 (1964)

    Article  Google Scholar 

  19. Kohn W., Sham L.: Phys. Rev. A 140, 1133 (1965)

    Article  Google Scholar 

  20. Takahashi H., Hori T., Wakabayashi T., Nitta T.: Chem. Lett. 3, 222 (2000)

    Article  Google Scholar 

  21. Takahashi H., Hori T., Wakabayashi T., Nitta T.: J. Phys. Chem. A 105, 4351 (2001)

    Article  CAS  Google Scholar 

  22. Takahashi H., Hori T., Hashimoto H., Nitta T.: J. Comp. Chem. 22, 1252 (2001)

    Article  CAS  Google Scholar 

  23. Takahashi H., Hashimoto H., Nitta T.: J. Chem. Phys. 119, 7964 (2003)

    Article  CAS  Google Scholar 

  24. Hori T., Takahashi H., Nitta T.: J. Chem. Phys. 119, 8492 (2003)

    Article  CAS  Google Scholar 

  25. Hori T., Takahashi H., Nitta T.: J. Theor. Comp. Chem. 4, 867 (2005)

    Article  CAS  Google Scholar 

  26. Takahashi H., Satou W., Nitta T.: J. Chem. Phys. 122, 044504 (2004)

    Article  Google Scholar 

  27. Takahashi H., Kawashima Y., Nitta T., Matubayasi N.: J. Chem. Phys. 123, 124504 (2005)

    Article  Google Scholar 

  28. Becke A.D.: J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  29. Lee C., Yang W., Parr R.G.: Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  30. Peng C., Schlegel H.B.: Israel J. Chem. 33, 449 (1994)

    Google Scholar 

  31. Gaussian 03, Revision B.05, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople (Gaussian, Pittsburgh PA, 2003)

  32. Becke A.D.: Phys. Rev. A 38, 309 (1988)

    Article  Google Scholar 

  33. Kleinman L., Bylander D.M.: Phys. Rev. Lett. 48, 1425 (1982)

    Article  CAS  Google Scholar 

  34. Kaminski G., Duffy E.M., Matsui T., Jorgensen W.L.: J. Phys. Chem. 98, 13077 (1994)

    Article  CAS  Google Scholar 

  35. Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L.: J. Chem. Phys. 79, 926 (1983)

    Article  CAS  Google Scholar 

  36. The reduced temperature for 575 K of TIP4P model is estimated as T r=1.02

  37. Dunning T.H. Jr.: J. Chem. Phys. 90, 1007 (1989)

    Article  CAS  Google Scholar 

  38. Takahashi H., Takei S., Hori T., Nitta T.: J. Mol. Struct.: THOECHEM 632, 185 (2003)

    Article  CAS  Google Scholar 

  39. Onsager L.: J. Am. Chem. Soc. 58, 1486 (1936)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, H., Miki, F., Ohno, H. et al. Hydration effects on the reaction with an open-shell transition state: QM/MM-ER study for the dehydration reaction of alcohol in hot water. J Math Chem 46, 781–794 (2009). https://doi.org/10.1007/s10910-009-9544-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-009-9544-2

Keywords

Navigation