Skip to main content
Log in

Computer simulation of the steady state currents at enzyme doped carbon paste electrodes

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The plate-gap model of porous enzyme doped electrode has been proposed and analyzed. It was suggested that reaction diffusion conditions in pores of bulk electrode resemble particular conditions in thin gap between parallel conducting plates. The model is based on the diffusion equations containing a nonlinear term related to the Michaelis–Menten kinetic of the enzymatic reaction inside gap. Steady state current was calculated for the wide range of given parameters and substrate concentrations. All dependences of current on substrate concentration were approximated by hyperbolas in order to obtain “apparent” parameters (maximal currents and apparent Michaelis constants) of modelled biosensors. Simple approximate relationships between given and apparent parameters were derived. The applicability of theoretical plate-gap model was tested for the case of carbon paste electrodes which were doped with PQQ – dependent glucose dehydrogenase. It was found, that soluble glucose dehydrogenase based biosensors exhibit characteristic features of the theoretical plate-gap biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.P.F. Turner I. Karube G.S. Wilson (1987) Biosensors: Fundamentals and Applications Oxford University Press Oxford

    Google Scholar 

  2. G.G. Guilboult G. Nagy (1973) Anal. Chem. 45 417 Occurrence Handle10.1021/ac60324a053

    Article  Google Scholar 

  3. L.D. Mell J.T. Maloy (1975) Anal. Chem. 47 299 Occurrence Handle10.1021/ac60352a006

    Article  Google Scholar 

  4. L.D. Mell J.T. Maloy (1976) Anal. Chem. 48 1597 Occurrence Handle10.1021/ac50005a045 Occurrence Handle962148

    Article  PubMed  Google Scholar 

  5. J. Kulys V.V. Sorochinski R.A. Vidziunaite (1986) Biosensors 2 135 Occurrence Handle10.1016/0265-928X(86)80001-3 Occurrence Handle3814190

    Article  PubMed  Google Scholar 

  6. T. Schulmeister J. Rose F. Scheller (1997) Biosens Bioelectron. 12 1021 Occurrence Handle10.1016/S0956-5663(97)00058-4

    Article  Google Scholar 

  7. R. Baronas F. Ivanauskas J. Kulys M. Sapagovas (2003) J Math. Chem. 34 227 Occurrence Handle10.1023/B:JOMC.0000004072.97338.12 Occurrence HandleMR2041405

    Article  MathSciNet  Google Scholar 

  8. L. Gorton (1995) Electroanalysis 7 23 Occurrence Handle10.1002/elan.1140070104

    Article  Google Scholar 

  9. M. Somasundrum K. Aoki (2002) J. Electroanal. Chem. 530 40 Occurrence Handle10.1016/S0022-0728(02)00980-4

    Article  Google Scholar 

  10. D.R. Thevenot K. Toth R.A. Durst G.S. Wilson (1999) Pure Appl. Chem. 71 2333

    Google Scholar 

  11. G. Brauer (Herausg.) (1975) Hahdbuch der präparativen anorganischen Chemie, B. 2 Ferdinand Enke Verlag Stuttgart

    Google Scholar 

  12. J. Barkauskas V. Samanavičiūtė D. Uždavinienė (2001) J. Therm. Anal. Calorim. 66 371 Occurrence Handle10.1023/A:1013122313497

    Article  Google Scholar 

  13. C.M. Hagg M. Skyllas-Kazacos (2002) J. Appl. Electrochem. 32 1063 Occurrence Handle10.1023/A:1021228304148

    Article  Google Scholar 

  14. M.C. Hennion (2000) J. Chromatogr. A 885 73 Occurrence Handle10.1016/S0021-9673(00)00085-6 Occurrence Handle10941668

    Article  PubMed  Google Scholar 

  15. A. Gorbunov O. Jost W. Pompe A. Graff (2002) Carbon 40 113 Occurrence Handle10.1016/S0008-6223(01)00080-X

    Article  Google Scholar 

  16. J. Razumiene V. Gureviciene V. Laurinavicius J.V. Grazulevicius (2001) Sens. & Actuat. B 78 243

    Google Scholar 

  17. P. Dakter J. Frank J. Duine (1986) Biochem. J. (part II). 239 163

    Google Scholar 

  18. L. Marcinkevičienė I. Bachmatova R. Semėnaitė R. Rudomanskis G. Bražėnas R MeŠkienė R. MeŠkys (1999) R Biotechnol. Lett. 21 187 Occurrence Handle10.1023/A:1005499709935

    Article  Google Scholar 

  19. V. Laurinavičius J. Razumiene A. Ramanavicius A.D. Ryabov (2004) Biosensors & Bioelectron. 20 1217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Šimkus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanauskas, F., Kaunietis, I., Laurinavičius, V. et al. Computer simulation of the steady state currents at enzyme doped carbon paste electrodes. J Math Chem 38, 355–366 (2005). https://doi.org/10.1007/s10910-005-5825-6

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-005-5825-6

Keywords

Navigation