Skip to main content
Log in

A 300-mK Test Bed for Rapid Characterization of Microwave SQUID Multiplexing Circuits

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Microwave SQUID multiplexing is a promising technique for multiplexing large arrays of transition edge sensors. A major bottleneck in the development and distribution of microwave SQUID multiplexer chips occurs in the time-intensive design testing and quality assurance stages. To obtain useful RF measurements, these devices must be cooled to temperatures below 500 mK. The need for a more efficient system to screen microwave multiplexer chips has grown as the number of chips requested by collaborators per year reaches into the hundreds. We have therefore assembled a test bed for microwave SQUID circuits, which decreases screening time for four 32-channel chips from 24 h in an adiabatic demagnetization refrigerator to approximately 5 h in a helium dip probe containing a closed cycle \({^3}\)He sorption refrigerator. We discuss defining characteristics of these microwave circuits and the challenges of establishing an efficient testing setup for them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.T. Lee, P.L. Richards, S.W. Nam, B. Cabrera, K.D. Irwin, Appl. Phys. Lett. 69, 1801 (1996). https://doi.org/10.1063/1.117491

    Article  ADS  Google Scholar 

  2. K.D. Irwin, G.C. Hilton, D.A. Wollman, J.M. Martinis, Appl. Phys. Lett. 69, 1945 (1996). https://doi.org/10.1063/1.117630

    Article  ADS  Google Scholar 

  3. J.N. Ullom, D.A. Bennett, Supercond. Sci. Technol. 28, 084003 (2015). https://doi.org/10.1088/0953-2048/28/8/084003

    Article  ADS  Google Scholar 

  4. J.A.B. Mates, G.C. Hilton, K.D. Irwin, L.R. Vale, K.W. Lehnert, Appl. Phys. Lett. 92, 023514 (2008). https://doi.org/10.1063/1.2803852

    Article  ADS  Google Scholar 

  5. J.A.B. Mates, D.T. Becker, D.A. Bennett, B.J. Dober, J.D. Gard, J.P. Hays-Wehle, J.W. Fowler, G.C. Hilton, C.D. Reintsema, D.R. Schmidt, D.S. Swetz, L.R. Vale, J.N. Ullom, Appl. Phys. Lett. 111, 062601 (2017). https://doi.org/10.1063/1.4986222

    Article  ADS  Google Scholar 

  6. R. Barends, J.J.A. Baselmans, J.N. Hovenier, J.R. Gao, S.J.C. Yates, T.M. Klapwijk, H.F.C. Hoevers, I.E.E.E. Trans, Appl. Supercond. 17, 263–266 (2007). https://doi.org/10.1109/TASC.2007.898541

    Article  ADS  Google Scholar 

  7. D.C. Mattis, J. Bardeen, Phys. Rev. 111, 412 (1958). https://doi.org/10.1103/PhysRev.111.412

    Article  ADS  Google Scholar 

  8. T.A. Marriage, J.A. Chervenak, W.B. Doriese, Nucl. Instrum. Methods A 559, 551–553 (2006). https://doi.org/10.1016/j.nima.2005.12.068

    Article  ADS  Google Scholar 

  9. B. Dober, D.T. Becker, D.A. Bennett, S.A. Bryan, S.M. Duff, J.D. Gard, J.P. Hays Wehle, G.C. Hilton, J. Hubmayr, J.A.B. Mates, C.D. Reintsema, L.R. Vale, J.N. Ullom, Appl. Phys. Lett. 111, 243510 (2017). https://doi.org/10.1063/1.5008527

    Article  ADS  Google Scholar 

  10. S.W. Henderson, J.R. Stevens, M. Amiri, J. Austermann, J.A. Beall, S. Chaudhuri, H.M. Cho, S.K. Choi, N.F. Cothard, K.T. Crowley, S.M. Duff, C.P. Fitzgerald, P.A. Gallardo, M. Halpern, M. Hasselfield, G.C. Hilton, S.P. Ho, J. Hubmayr, K.D. Irwin, B.J. Koopman, D. Li, Y. Li, J. McMahon, F. Nati, M.D. Niemack, C.D. Reintsema, M. Salatino, A. Schillaci, B.L. Schmitt, S.M. Simon, S.T. Staggs, E.M. Vavagiakis, J.T. Ward, SPIE 9914, 99141G (2016). https://doi.org/10.1117/12.2233895

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the DOE NEUP program, the NIST Innovation in Measurement Science program and Linac Coherent Light Source operations funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Wessels.

Additional information

Contribution of a U.S. government agency, not subject to copyright.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wessels, A.L., Becker, D.T., Bennett, D.A. et al. A 300-mK Test Bed for Rapid Characterization of Microwave SQUID Multiplexing Circuits. J Low Temp Phys 193, 886–892 (2018). https://doi.org/10.1007/s10909-018-2048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2048-3

Keywords

Navigation