Skip to main content
Log in

Quantum Phases and Collective Excitations of a Spin-Orbit-Coupled Bose–Einstein Condensate in a One-Dimensional Optical Lattice

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The ground state of a spin-orbit-coupled Bose gas in a one-dimensional optical lattice is known to exhibit a mixed regime, where the condensate wave function is given by a superposition of multiple Bloch-wave components, and an unmixed one, in which the atoms occupy a single Bloch state. The unmixed regime features two unpolarized Bloch-wave phases, having quasimomentum at the center or at the edge of the first Brillouin zone, and a polarized Bloch-wave phase at intermediate quasimomenta. By calculating the critical values of the Raman coupling and of the lattice strength at the transitions among the various phases, we show the existence of a tricritical point where the mixed, the polarized and the edge-quasimomentum phases meet, and whose appearance is a consequence of the spin-dependent interaction. Furthermore, we evaluate the excitation spectrum in the unmixed regime and we characterize the behavior of the phonon and the roton modes, pointing out the instabilities occurring when a phase transition is approached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Notice that, in order to perform the numerical calculation, one has to truncate the two summations in Eq. (9) to a finite number of terms with \(|l| \le 2 N_s + 1\) and \(|l^{\prime }| \le N_\mathrm{L}\), where \(N_s\) and \(N_\mathrm{L}\) must be chosen large enough such that all the relevant contributions to the wave function be retained.

References

  1. Y.-J. Lin, K. Jimenez-Garcia, I.B. Spielman, Nature 471, 83 (2011). doi:10.1038/nature09887

    Article  ADS  Google Scholar 

  2. J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Öhberg, Rev. Mod. Phys. 83, 1523 (2011). doi:10.1103/RevModPhys.83.1523

    Article  ADS  Google Scholar 

  3. V. Galitski, I.B. Spielman, Nature 494, 49 (2013). doi:10.1038/nature11841

    Article  ADS  Google Scholar 

  4. X. Zhou, Y. Li, Z. Cai, C. Wu, J. Phys. B 46, 134001 (2013). doi:10.1088/0953-4075/46/13/134001

    Article  ADS  Google Scholar 

  5. N. Goldman, G. Juzeliūnas, P. Öhberg, I.B. Spielman, Rep. Prog. Phys. 77, 126401 (2014). doi:10.1088/0034-4885/77/12/126401

    Article  ADS  Google Scholar 

  6. H. Zhai, Rep. Prog. Phys. 78, 026001 (2015). doi:10.1088/0034-4885/78/2/026001

    Article  ADS  Google Scholar 

  7. Y. Li, G.I. Martone, S. Stringari, Spin-orbit-coupled Bose–Einstein condensates, in Annual Review of Cold Atoms and Molecules, vol. 3, chap. 5, ed. by K.W. Madison, K. Bongs, L.D. Carr, A.M. Rey, H. Zhai (World Scientific, Singapore, 2015), pp. 201–250

  8. Y. Zhang, M.E. Mossman, T. Busch, P. Engels, C. Zhang, Front. Phys. 11, 118103 (2016). doi:10.1007/s11467-016-0560-y

    Article  Google Scholar 

  9. J. Larson, J.-P. Martikainen, A. Collin, E. Sjöqvist, Phys. Rev. A 82, 043620 (2010). doi:10.1103/PhysRevA.82.043620

    Article  ADS  Google Scholar 

  10. H. Sakaguchi, B. Li, Phys. Rev. A 87, 015602 (2013). doi:10.1103/PhysRevA.87.015602

    Article  ADS  Google Scholar 

  11. Y. Zhang, C. Zhang, Phys. Rev. A 87, 023611 (2013). doi:10.1103/PhysRevA.87.023611

    Article  ADS  Google Scholar 

  12. Y.V. Kartashov, V.V. Konotop, F.K. Abdullaev, Phys. Rev. Lett. 111, 060402 (2013). doi:10.1103/PhysRevLett.111.060402

    Article  ADS  Google Scholar 

  13. Y. Cheng, G. Tang, S.K. Adhikari, Phys. Rev. A 89, 063602 (2014). doi:10.1103/PhysRevA.89.063602

    Article  ADS  Google Scholar 

  14. M. Salerno, F.K. Abdullaev, arXiv:1501.07296

  15. W. Li, L. Chen, Z. Chen, Y. Hu, Z. Zhang, Z. Liang, Phys. Rev. A 91, 023629 (2015). doi:10.1103/PhysRevA.91.023629

    Article  ADS  Google Scholar 

  16. Y. Zhang, Y. Xu, T. Busch, Phys. Rev. A 91, 043629 (2015). doi:10.1103/PhysRevA.91.043629

    Article  ADS  Google Scholar 

  17. T.F.J. Poon, X.-J. Liu, Phys. Rev. A 93, 063420 (2016). doi:10.1103/PhysRevA.93.063420

    Article  ADS  Google Scholar 

  18. Z. Chen, Z. Liang, Phys. Rev. A 93, 013601 (2016). doi:10.1103/PhysRevA.93.013601

    Article  ADS  Google Scholar 

  19. G.I. Martone, T. Ozawa, C. Qu, S. Stringari, Phys. Rev. A 94, 043629 (2016). doi:10.1103/PhysRevA.94.043629

    Article  ADS  Google Scholar 

  20. H.M. Hurst, J.H. Wilson, J.H. Pixley, I.B. Spielman, S.S. Natu, Phys. Rev. A 94, 063613 (2016). doi:10.1103/PhysRevA.94.063613

    Article  ADS  Google Scholar 

  21. C. Hamner, Y. Zhang, M.A. Khamehchi, M.J. Davis, P. Engels, Phys. Rev. Lett. 114, 070401 (2015). doi:10.1103/PhysRevLett.114.070401

    Article  ADS  Google Scholar 

  22. Y.A. Bychkov, E.I. Rashba, J. Phys. C 17, 6039 (1984). doi:10.1088/0022-3719/17/33/015

    Article  ADS  Google Scholar 

  23. G. Dresselhaus, Phys. Rev. 100, 580 (1955). doi:10.1103/PhysRev.100.580

    Article  ADS  Google Scholar 

  24. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publishing, Philadelphia, 1976)

    MATH  Google Scholar 

  25. C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases, 2nd edn. (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  26. L.P. Pitaevskii, S. Stringari, Bose–Einstein Condensation and Superfluidity (Oxford University Press, Oxford, 2016)

    Book  MATH  Google Scholar 

  27. T.-L. Ho, S. Zhang, Phys. Rev. Lett. 107, 150403 (2011). doi:10.1103/PhysRevLett.107.150403

    Article  ADS  Google Scholar 

  28. Y. Li, L.P. Pitaevskii, S. Stringari, Phys. Rev. Lett. 108, 225301 (2012). doi:10.1103/PhysRevLett.108.225301

    Article  ADS  Google Scholar 

  29. Y. Li, G.I. Martone, L.P. Pitaevskii, S. Stringari, Phys. Rev. Lett. 110, 235302 (2013). doi:10.1103/PhysRevLett.110.235302

    Article  ADS  Google Scholar 

  30. Y. Li, G.I. Martone, S. Stringari, EPL 99, 56008 (2012). doi:10.1209/0295-5075/99/56008

    Article  ADS  Google Scholar 

  31. J.-Y. Zhang, S.-C. Ji, Z. Chen, L. Zhang, Z.-D. Du, B. Yan, G.-S. Pan, B. Zhao, Y.-J. Deng, H. Zhai, S. Chen, J.-W. Pan, Phys. Rev. Lett. 109, 115301 (2012). doi:10.1103/PhysRevLett.109.115301

    Article  ADS  Google Scholar 

  32. G.I. Martone, Y. Li, L.P. Pitaevskii, S. Stringari, Phys. Rev. A 86, 063621 (2012). doi:10.1103/PhysRevA.86.063621

    Article  ADS  Google Scholar 

  33. S.-C. Ji, L. Zhang, X.-T. Xu, Z. Wu, Y. Deng, S. Chen, J.-W. Pan, Phys. Rev. Lett. 114, 105301 (2015). doi:10.1103/PhysRevLett.114.105301

    Article  ADS  Google Scholar 

  34. W. Zheng, Z.-Q. Yu, X. Cui, H. Zhai, J. Phys. B 46, 134007 (2013). doi:10.1088/0953-4075/46/13/134007

    Article  ADS  Google Scholar 

  35. M.A. Khamehchi, Y. Zhang, C. Hamner, T. Busch, P. Engels, Phys. Rev. A 90, 063624 (2014). doi:10.1103/PhysRevA.90.063624

    Article  ADS  Google Scholar 

  36. D. Toniolo, J. Linder, Phys. Rev. A 89, 061605(R) (2014). doi:10.1103/PhysRevA.89.061605

    Article  ADS  Google Scholar 

  37. G.I. Martone, Y. Li, S. Stringari, Phys. Rev. A 90, 041604(R) (2014). doi:10.1103/PhysRevA.90.041604

    Article  ADS  Google Scholar 

  38. J. Li, W. Huang, B. Shteynas, S. Burchesky, F.Ç. Top, E. Su, J. Lee, A.O. Jamison, W. Ketterle, Phys. Rev. Lett. 117, 185301 (2016). doi:10.1103/PhysRevLett.117.185301

    Article  ADS  Google Scholar 

  39. J. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F.Ç. Top, A.O. Jamison, W. Ketterle, Nature 543, 91 (2017). doi:10.1038/nature21431

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Useful discussions with T. Ozawa, D. Papoular, N. Pavloff, C. Qu, and S. Stringari are acknowledged. The research leading to these results has received funding from the European Research Council under European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement No. 341197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Martone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martone, G.I. Quantum Phases and Collective Excitations of a Spin-Orbit-Coupled Bose–Einstein Condensate in a One-Dimensional Optical Lattice. J Low Temp Phys 189, 262–275 (2017). https://doi.org/10.1007/s10909-017-1816-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1816-9

Keywords

Navigation