Skip to main content
Log in

Novel “Vibrating Wire Like” NEMS and MEMS Structures for Low Temperature Physics

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Using microfabrication techniques, it has become possible to make mechanical devices with dimensions in the micro and even in the nano scale domain. Allied to low temperature techniques, these systems have opened a new path in physics with the ultimate goal of reaching the quantum nature of a macroscopic mechanical degree of freedom (LaHaye et al. in Science 304:74, 2004). Within this field, materials research plays a significant role. It ranges from the fundamental nature of the dissipation mechanisms at the lowest temperatures, to the non-linear behavior of mechanical oscillators. We present experimental results on cantilever structures mimicking the well known “vibrating wire” technique, which present many advantages as far as the mechanical studies are concerned: the measurement is phase-resolved, they can be magnetomotive and electrostatically driven, and support extremely large displacements. Moreover, these devices can be advantageously used to study quantum fluids, making the link with conventional low temperature physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.D. LaHaye, O. Buu, B. Camarota, K.C. Schwab, Science 304, 74 (2004)

    Article  ADS  Google Scholar 

  2. M.A. Black, H.E. Hall, K. Thomson, in Proc. of the 10th Int. Conf. on Low Temperature Physics (1966), p. 174

  3. M.A. Black, H.E. Hall, K. Thomson, J. Phys. C: Solid State Phys. 4, 129 (1971)

    Article  ADS  Google Scholar 

  4. A.M. Guénault, V. Keith, C.J. Kennedy, S.G. Mussett, G.R. Pickett, J. Low Temp. Phys. 62, 511 (1986)

    Article  ADS  Google Scholar 

  5. C. Bäuerle, Yu.M. Bunkov, S.N. Fisher, H. Godfrin, Phys. Rev. B 57, 14381 (1998)

    Article  ADS  Google Scholar 

  6. C.B. Winkelmann, E. Collin, Yu.M. Bunkov, H. Godfrin, J. Low Temp. Phys. 135, 3 (2004)

    Article  ADS  Google Scholar 

  7. C.B. Winkelmann, J. Elbs, Yu.M. Bunkov, E. Collin, H. Godfrin, M. Krusius, Nucl. Instrum. Methods Phys. Res. A 574, 264 (2007)

    Article  ADS  Google Scholar 

  8. R. König, P. Esquinazi, F. Pobell, J. Low Temp. Phys. 90, 55 (1993)

    Article  ADS  Google Scholar 

  9. S. Triqueneaux, E. Collin, D.J. Cousins, T. Fournier, C. Bäuerle, Yu.M. Bunkov, H. Godfrin, Physica B 284, 2141 (2000)

    Article  ADS  Google Scholar 

  10. E. Collin, L. Filleau, T. Fournier, Yu.M. Bunkov, H. Godfrin, J. Low Temp. Phys. 150(5–6), 739 (2008)

    Article  ADS  Google Scholar 

  11. D.W. Carr, S. Evoy, L. Sekaric, H.G. Craighead, J.M. Parpia, Appl. Phys. Lett. 75, 920 (1999)

    Article  ADS  Google Scholar 

  12. G. Zolfagharkhani, A. Gaidarzhy, S.-B. Shim, R.L. Badzey, P. Mohanty, Phys. Rev. B 72, 224101 (2005)

    Article  ADS  Google Scholar 

  13. M. Godin, V. Tabard-Cossa, P. Grütter, P. Williams, Appl. Phys. Lett. 79, 551 (2001)

    Article  ADS  Google Scholar 

  14. A.W. McFarland, M.A. Poggi, M.J. Doyle, L.A. Bottomley, J.S. Colton, Appl. Phys. Lett. 87, 053505 (2005)

    Article  ADS  Google Scholar 

  15. J.-S. Heron, T. Fournier, N. Mingo, O. Bourgeois, Nano Lett. 9, 1861 (2009)

    Article  ADS  Google Scholar 

  16. R.E. Mihailovich, J.M. Parpia, Phys. Rev. Lett. 68, 3052 (1992)

    Article  ADS  Google Scholar 

  17. P. Mohanty, D.A. Harrington, K.L. Ekinci, Y.T. Yang, M.J. Murphy, M.L. Roukes, Phys. Rev. B 66, 085416 (2002)

    Article  ADS  Google Scholar 

  18. C. Seoánez, F. Guinea, A.H. Castro Neto, Phys. Rev. B 77, 125107 (2008)

    Article  ADS  Google Scholar 

  19. R. Lifshitz, M.L. Roukes, Phys. Rev. B 61, 5600 (2000)

    Article  ADS  Google Scholar 

  20. M.A. Haque, M.T.A. Saif, Proc. Natl. Acad. Sci. USA 101, 6335 (2005)

    Article  ADS  Google Scholar 

  21. A.D. Fefferman, R.O. Pohl, A.T. Zehnder, J.M. Parpia, Phys. Rev. Lett. 100, 195501 (2008)

    Article  ADS  Google Scholar 

  22. J. Classen, T. Burkert, C. Enss, S. Hunklinger, Phys. Rev. Lett. 84, 2176 (2000)

    Article  ADS  Google Scholar 

  23. L.D. Landau, E.M. Lifshitz, Mechanics, 3rd edn. (Elsevier Science, Amsterdam, 1976)

    Google Scholar 

  24. K.L. Ekinci, M.L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005)

    Article  ADS  Google Scholar 

  25. H.W.Ch. Postma, I. Kozinsky, A. Husain, M.L. Roukes, Appl. Phys. Lett. 86, 223105 (2005)

    Article  ADS  Google Scholar 

  26. J. Kober, A. Gupta, P. Esquinazi, H.F. Braun, Phys. Rev. Lett. 66, 2507 (1991)

    Article  ADS  Google Scholar 

  27. E. Collin, Y. Bilbao-Zarraga, Yu.M. Bunkov, H. Godfrin (eds.) Poster Session on Superconductor Coated Electro-Mechanical Systems for Low and Ultra-Low Temperature Physics. ULT 2008 Conference Frontiers of Low Temperature Physics, Royal Holloway University of London, England, 14–17 August 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Collin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collin, E., Kofler, J., Heron, JS. et al. Novel “Vibrating Wire Like” NEMS and MEMS Structures for Low Temperature Physics. J Low Temp Phys 158, 678–684 (2010). https://doi.org/10.1007/s10909-009-9960-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-009-9960-5

Keywords

PACS

Navigation