Skip to main content
Log in

A Numerical Treatment of the rf SQUID: II. Noise Temperature

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate rf SQUIDs (Superconducting QUantum Interference Devices), coupled to a resonant input circuit, a readout tank circuit and a preamplifier, by numerically solving the corresponding Langevin equations. The quantity of interest is the noise temperature T N . We use an analytical expression T N0,opt, which is already optimized for the parameters of the input circuit, and vary the model parameters of the remaining circuit to minimize T N0,opt. We also compare T N0,opt to numerical simulations of the full circuit and find good agreement. The best device performance is obtained when β L ≡2π LI 0/Φ 0 is in the range 0.5–0.9; L is the SQUID inductance, I 0 the junction critical current and Φ 0 the flux quantum. For a tuned input circuit we find an optimal noise temperature T N0,opt≈3Tf/f c , where T, f and f c denote temperature, signal frequency and junction characteristic frequency, respectively. This value is close to the optimal noise temperatures obtained by approximate analytical theories carried out previously in the limit β L ≲1. We study the dependence of T N0,opt on various model parameters away from their optimum values, and often find much lower values of T N0,opt than predicted by the analytical theory. We finally discuss implications for devices that can be implemented experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Chesca, R. Kleiner, D. Koelle, in The SQUID Handbook, vol. 1, ed. by J. Clarke, A.I. Braginski (Wiley-VCH, Weinheim, 2004), p. 29

    Chapter  Google Scholar 

  2. R. Kleiner, D. Koelle, J. Clarke, A numerical treatment of the rf SQUID: I. General properties and noise energy. J. Low Temp. Phys., this issue. doi: 10.1007/s10909-007-9511-x

  3. V.V. Danilov, K.K. Likharev, O.V. Snigirev, in Proceedings of SQUID ’80 (de Gruyter, Berlin, 1980), p. 473

    Google Scholar 

  4. G.J. Ehnholm, J. Low Temp. Phys. 29, 1 (1977)

    Article  Google Scholar 

  5. J.N. Hollenhorst, R.P. Giffard, J. Appl. Phys. 51, 1719 (1980)

    Article  ADS  Google Scholar 

  6. J. Clarke, C.D. Tesche, R.P. Giffard, J. Low Temp. Phys. 37, 405 (1979)

    Article  Google Scholar 

  7. M.W. Pospieszalski, IEEE Microw. Mag. 62 (2005)

  8. R.F. Bradley, Nucl. Phys. B (Proc. Suppl.) 72, 137 (1999)

    Article  ADS  Google Scholar 

  9. F.N.H. Robinson, Noise and Fluctuations in Electronic Devices and Circuits (Oxford University Press, London, 1974)

    Google Scholar 

  10. M. Mück, Y. Zhang, Private communications

  11. K. van Bibber, L.J. Rosenberg, Phys. Today 59, 30 (2006)

    Article  Google Scholar 

  12. M. Mück, M.-O. André, J. Clarke, J. Gail, C. Heiden, Appl. Phys. Lett. 72, 2885 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold Kleiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleiner, R., Koelle, D. & Clarke, J. A Numerical Treatment of the rf SQUID: II. Noise Temperature. J Low Temp Phys 149, 261–293 (2007). https://doi.org/10.1007/s10909-007-9512-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-007-9512-9

Keywords

PACS

Navigation