Skip to main content
Log in

High-Resolution Measurements of the Coexistence Curve Very Near the 3He Liquid–Gas Critical Point

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The shape of the liquid–gas coexistence curve of 3He very near the critical point temperature T c was measured in the range −5× 10−3<T/Tc−1<−1.5 × 10−6 using the quasistatic thermogram method. This study was performed in the Earth6s gravitational field using two cells of very different heights (0.5 and 48 mm). The measured coexistence curve near the critical point was strongly affected by the gravitational field. Away from the critical point, we compare the coexistence curve obtained using the thermogram method with earlier work by Pittman et al. The recently developed crossover parametric model of the equation-of-state is used to take gravity effects into account. The shape of the measured coexistence curve very near the critical point is remarkably symmetric about the critical density. Our results close to the critical point are consistent with the slope of the rectilinear diameter obtained by Pitman et al. from measurement farther away from T c. The deviation from a law of rectilinear diameter predicted by revised scaling and the Yang–Yang anomaly were not observed in 3He within the 0.1% accuracy in our measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. R. Moldover, J. V. Sengers, R. W. Gammon, and R. J. Hocken, Rev.Mod.Phys. 51, 79 (1979).

    Google Scholar 

  2. P. C. Hohenberg and M. Barmatz, Phys.Rev.A 6, 289 (1972).

    Google Scholar 

  3. U. N¨arger and D. A. Balzarini, Phys.Rev. B 42, 6651 (1990).

    Google Scholar 

  4. M. A. Weinberger and W. G. Schneider, Can.J.Chem. 30, 422, 847 (1952).

    Google Scholar 

  5. C. Pittman, T. Doiron, and H. Meyer, Phys.Rev.B 20, 3678 (1979).

    Google Scholar 

  6. A. V. Voronel, V. A. Smirnov, and Y. R. Chashkin, JETP, 9(7), 229 (1969).

    Google Scholar 

  7. V. Agayan, M. Anisimov, and J. V. Sengers, Phys.Rev.E 64, 026125 (2001).

    Google Scholar 

  8. P. Schofield, J. D. Litster, and J. T. Ho, Phys.Rev.Lett. 23, 1098 (1969).

    Google Scholar 

  9. J. T. Ho and J. D. Litster, Phys.Rev. B 2, 4523 (1970).

    Google Scholar 

  10. F. Zhong and H. Meyer, Phys.Rev.E 51, 3223 (1995).

    Google Scholar 

  11. M. Barmatz, I. Hahn, F. Zhong, M. A. Anisimov, and V. A. Agayan, J.Low Temp.Phys. 121, 633 (2000).

    Google Scholar 

  12. H. Meyer and L. H. Cohen, Phys.Rev. A 38, 2081 (1988).

    Google Scholar 

  13. Model GR-200B-1500, Lakeshore Cryotronics Inc.

  14. P. Welander and I. Hahn, Rev.Sci.Instrum. 72, 3600 (2001).

    Google Scholar 

  15. H. Kierstead, J.Low Temp.Phys. 23, 791 (1976).

    Google Scholar 

  16. T. Doiron and H. Meyer, Phys.Rev. B 17, 2141 (1978).

  17. Model AH2500A, Andeen-Hagerling, Inc.

  18. I. Hahn, F. Zhong, M. Barmatz, R. Haussmann, and J. Rudnick, Phys.Rev.E 63, 055104(R) (2001).

  19. F. Zhong, M. Barmatz, and I. Hahn, Phys.Rev.E 67, 021106 (2003).

    Google Scholar 

  20. D. Dahl and M. R. Moldover, Phys.Rev.Lett. 27, 1421 (1971).

    Google Scholar 

  21. A. Onuki, Int.J.Thermophys. 19, 471 (1998).

    Google Scholar 

  22. R. Guida and J. Zinn–Justin, J.Phys.A 31, 8103 (1998).

    Google Scholar 

  23. F. Wegner, Phys.Rev. B5, 4529 (1972).

  24. N. D. Mermin, Phys.Rev.Lett. 26, 169, 957 (1971), N. D. Mermin and J. J. Rehr, Phys. Rev.A 4, 2408 (1971).

    Google Scholar 

  25. M. E. Fisher and G. Orkoulas, Phys.Rev.Lett. 85, 696 (2000); G. Orkoulas, M. E. Fisher, and Cevat ¨ Ust¨un, J.Chem.Phys. 113, 7530 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, I., Weilert, M., Zhong, F. et al. High-Resolution Measurements of the Coexistence Curve Very Near the 3He Liquid–Gas Critical Point. Journal of Low Temperature Physics 137, 579–598 (2004). https://doi.org/10.1007/s10909-004-0893-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-004-0893-8

Navigation