Skip to main content

Advertisement

Log in

Polymer Blend Nanoarchitectonics with Exfoliated Molybdenum Disulphide/Polyvinyl Chloride/Nitrocellulose

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Inorganic fillers modified polymer blends are in demands for domestic as well as engineering applications. In the present investigation, polyvinylchloride (PVC)/Nitrocellulose (NC)/Molybdenum disulphide (MoS2) polymer blend were prepared by solution blending. Chemical functionalities present in polymer blends were confirmed the interaction of filler and polymer host system analysed by Fourier transform infrared spectrophotometer. E2g and A1g active mode of Raman scattering were analysed by Raman spectroscopy. Increased degree of crystallinity and crystallite size of polymer blends due to incorporation of MoS2 was investigated by X-ray diffraction. Increased pore morphology of polymer blends was foreseen by Scanning electron microscopy. Intercalated layers of MoS2 in polymer host system was confirmed by energy dispersive X-ray analysis. Dielectric properties of the modified blends were studied by impedance analyser. The hydrophobic to hydrophilic nature of polymer system was determined by measurement of contact angle and relative surface energy analysed by surface goniometer. Increased thermal conductivity due to interaction of filler and polymer host system mutually correlate to the increased degree of crystallinity were explored by Lee’s disc probe. We quantified the influence of MoS2 modified polymer blends could be preferred excellent candidate for engineering domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.X. Chan et al., Effect of nanofillers on tribological properties of polymer nanocomposites: a review on recent development. Polymers 13(17), 2867 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M.M. Damien, E. Guillaume, C. Chivas-Joly, Properties of nanofillers in polymer, in Nanocomposites and Polymers with Analytical Methods (2011).

  3. M. Rallini, and J.M. Kenny, Nanofillers in polymers, in Modification of Polymer Properties (2017), pp. 47–86.

  4. D. Marquis, E. Guillaume, C. Chivas-Joly, Properties of nanofillers in polymer, in Nanocomposites and Polymers with Analytical Methods (2011).

  5. T. Gao et al., Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies. Front Mech Eng 17(2), 1–35 (2022)

    Article  Google Scholar 

  6. P.S. Jadhav, et al., Study of the preparation and properties of polyvinyl chloride/nitrocellulose polymer blends. Polymer Int. 2022

  7. S. Mallakpour, M.A. Sadaty, Thiamine hydrochloride (vitamin B1) as modifier agent for TiO2 nanoparticles and the optical, mechanical, and thermal properties of poly(vinyl chloride) composite films. RSC Adv. 6(95), 92596–92604 (2016)

    Article  CAS  Google Scholar 

  8. Q. Gao, L. Yang, N. Liu, Conjugated-polymer/inorganic nanocomposites as electrode materials for Li-Ion batteries, in fundamentals of conjugated polymer blends. Copolym. Compos. 379, 379–418 (2015)

    Google Scholar 

  9. S. Thomas et al., Polymer nanocomposites: preparation, properties and applications. Rubber Fibers Plast Int 2, 49–56 (2007)

    Google Scholar 

  10. M. Akashi, T. Akagi, Composite materials by building block chemistry using weak interaction. Bull. Chem. Soc. Jpn. 94(7), 1903–1921 (2021)

    Article  CAS  Google Scholar 

  11. J. Li et al., Recent progress in polymer/two-dimensional nanosheets composites with novel performances. Progr. Polym. Sci. 126, 101505 (2022)

    Article  CAS  Google Scholar 

  12. X. Li et al., Isotope-engineering the thermal conductivity of two-dimensional MoS2. ACS Nano 13(2), 2481–2489 (2019)

    CAS  PubMed  Google Scholar 

  13. K. Zhou et al., In situ synthesis, morphology, and fundamental properties of polymer/MoS2 nanocomposites. Compos. Sci. Technol. 107, 120–128 (2015)

    Article  CAS  Google Scholar 

  14. K. Zhou et al., Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties. RSC Adv. 2(31), 11695–11703 (2012)

    Article  CAS  Google Scholar 

  15. M.R. Gharib-Zahedi, A. Koochaki, M. Alaghemandi. Significantly enhanced polymer thermal conductivity by confining effect through bilayer MoS2 Surfaces. 2021. arXiv:2108.03875

  16. G. Asan, A. Asan, H. Çelikkan, The effect of 2D-MoS2 doped polypyrrole coatings on brass corrosion. J. Mol. Struct. 1203, 127318 (2020)

    Article  CAS  Google Scholar 

  17. K. Wenelska, E. Mijowska, Preparation, thermal conductivity, and thermal stability of flame retardant polyethylene with exfoliated MoS2/MxOy. New J. Chem. 41(22), 13287–13292 (2017)

    Article  CAS  Google Scholar 

  18. K. Malkappa, S.S. Ray, N. Kumar, Enhanced thermo-mechanical stiffness, thermal stability, and fire retardant performance of surface-modified 2D MoS2 nanosheet-reinforced polyurethane composites. Macromol. Mater. Eng. 304(1), 1800562 (2019)

    Article  Google Scholar 

  19. K. Zhou et al., The influence of melamine phosphate modified MoS2 on the thermal and flammability of poly(butylene succinate) composites. Polym. Adv. Technol. 27(10), 1397–1400 (2016)

    Article  CAS  Google Scholar 

  20. A. Saboor et al., PS/PANI/MoS2 hybrid polymer composites with high dielectric behavior and electrical conductivity for EMI shielding effectiveness. Materials (Basel) 12(17), 2690 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. K. Zhou et al., Constructing hierarchical polymer@MoS2 core-shell structures for regulating thermal and fire safety properties of polystyrene nanocomposites. Compos. A Appl. Sci. Manuf. 107, 144–154 (2018)

    Article  CAS  Google Scholar 

  22. N. Xu et al., Preparation of polyvinyl alcohol/two-dimensional transition metal dichalcogenides composites by high-pressure homogenization. J. Appl. Polym. Sci. 137(12), 48487 (2019)

    Article  Google Scholar 

  23. Z. Yang, Z. Guo, C. Yuan, Effects of MoS2 microencapsulation on the tribological properties of a composite material in a water-lubricated condition. Wear 432–433, 102919 (2019)

    Article  Google Scholar 

  24. P.M. Patare, G.S. Lathkar, Optimization of glass fiber and MoS2 filled PTFE composites using non traditional optimization techniques. Mater. Today 5(2), 7310–7319 (2018)

    CAS  Google Scholar 

  25. Q. Huang et al., Synthesis of polyacrylamide immobilized molybdenum disulfide (MoS2 @PDA@PAM) composites via mussel-inspired chemistry and surface-initiated atom transfer radical polymerization for removal of copper (II) ions. J. Taiwan Inst. Chem. Eng. 86, 174–184 (2018)

    Article  CAS  Google Scholar 

  26. H.-X. Zhang et al., Fabrication of polyethylene/MoS 2 nanocomposites using a novel exfoliated-MoS2–MgCl Bi-supported Ziegler-Natta catalyst via in-situ polymerization. Compos. Sci. Technol. 137, 9–15 (2016)

    Article  CAS  Google Scholar 

  27. J. Guo et al., Enhanced performance of multilayer MoS2 transistor employing a polymer capping layer. Org. Electron. 40, 75–78 (2017)

    Article  CAS  Google Scholar 

  28. R. Ray, A.S. Sarkar, S.K. Pal, Improving performance and moisture stability of perovskite solar cells through interface engineering with polymer-2D MoS2 nanohybrid. Sol. Energy 193, 95–101 (2019)

    Article  CAS  Google Scholar 

  29. A. Saboor et al., PS/PANI/MoS2 hybrid polymer composites with high dielectric behavior and electrical conductivity for EMI shielding effectiveness. Materials 12(17), 2690 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. K. Zhou et al., Facile preparation of poly(methyl methacrylate)/MoS2 nanocomposites via in situ emulsion polymerization. Mater. Lett. 126, 159–161 (2014)

    Article  CAS  Google Scholar 

  31. X. Feng et al., Defect-free MoS2 nanosheets: advanced nanofillers for polymer nanocomposites. Compos. A Appl. Sci. Manuf. 81, 61–68 (2016)

    Article  CAS  Google Scholar 

  32. T. Li, G. Galli, Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111(44), 16192–16196 (2007)

    Article  CAS  Google Scholar 

  33. A.V. Kesavan, A.D. Rao, P.C. Ramamurthy, Optical and electronic property tailoring by MoS2-polymer hybrid solar cell. Org. Electron. 48, 138–146 (2017)

    Article  CAS  Google Scholar 

  34. E. Abdel-Fattah, A.I. Alharthi, T. Fahmy, Spectroscopic, optical and thermal characterization of polyvinyl chloride-based plasma-functionalized MWCNTs composite thin films. Appl. Phys. A 125(7), 1–8 (2019)

    Article  Google Scholar 

  35. M. Fathy et al., Absorption of calcium ions on oxidized graphene sheets and study its dynamic behavior by kinetic and isothermal models. Appl. Nanosci. 6(8), 1105–1117 (2016)

    Article  CAS  Google Scholar 

  36. V.S. Solodovnichenko et al., Synthesis of carbon materials by the short-term mechanochemical activation of polyvinyl chloride. Procedia Eng. 152, 747–752 (2016)

    Article  CAS  Google Scholar 

  37. A.F.A. Naim et al., Characterization of PVC/MWCNTs nanocomposite: solvent blend. Sci. Eng. Compos. Mater. 27(1), 55–64 (2020)

    Article  Google Scholar 

  38. S. Trewartha et al., Erratum: determination of deterrent profiles in nitrocellulose propellant grains using confocal Raman microscopy. Propellants Explos. Pyrotech. 36(5), 477–477 (2011)

    Article  Google Scholar 

  39. A. Le Brize, D. Spitzer, Plasticization of submicron-structured LOVA propellants by a linear dinitramine. Central Eur. J. Energ. Mater. 13(3), 547–556 (2016)

    Article  Google Scholar 

  40. K. Zhao et al., High-performance and long-cycle life of triboelectric nanogenerator using PVC/MoS2 composite membranes for wind energy scavenging application. Nano Energy 91, 106649 (2022)

    Article  CAS  Google Scholar 

  41. S. Thakur et al., Enhanced physical properties of two dimensional MoS2/poly(vinyl alcohol) nanocomposites. Compos. A Appl. Sci. Manuf. 110, 284–293 (2018)

    Article  CAS  Google Scholar 

  42. M.R. Mansor et al., 3—recent advances in polyethylene-based biocomposites, in Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites. (Woodhead Publishing, Sawston, 2018), pp.71–96

    Chapter  Google Scholar 

  43. M.H. Alotaibi et al., SEM analysis of the tunable honeycomb structure of irradiated poly(vinyl chloride) films doped with polyphosphate. Heliyon 4(12), e01013 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Z. Zhang et al., High-performance asymmetric isoporous nanocomposite membranes with chemically-tailored amphiphilic nanochannels. J. Mater. Chem. A 8(19), 9554–9566 (2020)

    Article  CAS  Google Scholar 

  45. H.-X. Zhang, et al. Fabrication of PA6/MoS2 nanocomposites via melt blending of PA6 with PA6/PEG modified-MoS2 masterbatch. Polym. Bull. 1–14 (2022).

  46. S. Ramesh, C.-W. Liew, Dielectric and FTIR studies on blending of [xPMMA–(1–x)PVC] with LiTFSI. Measurement 46(5), 1650–1656 (2013)

    Article  Google Scholar 

  47. J. Anandraj, G.M. Joshi, Zirconia sulphate dispersed polymer composites for electronic applications. J. Inorg. Organomet. Polym Mater. 27(6), 1835–1850 (2017)

    Article  CAS  Google Scholar 

  48. Humbe SS, et al., Quantification of pre and post air plasma defected graphene oxide dispersed polymer blends for high dielectric applications. New J. Chem. (2022).

  49. C.-W. Liew, S. Ramesh, R. Durairaj, Impact of low viscosity ionic liquid on PMMA–PVC–LiTFSI polymer electrolytes based on AC -impedance, dielectric behavior, and HATR–FTIR characteristics. J. Mater. Res. 27(23), 2996–3004 (2012)

    Article  CAS  Google Scholar 

  50. S.A. Mansour, R.A. Elsad, M.A. Izzularab, Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. J. Polym. Res. 23(5), 1–8 (2016)

    Article  CAS  Google Scholar 

  51. M.S. Mohy Eldin et al., Click grafting of Chitosan onto PVC surfaces for biomedical applications. Adv. Polym. Technol. 37(1), 38–49 (2018)

    Article  CAS  Google Scholar 

  52. E. Dhanumalayan et al., Physico-chemical and surface properties of air plasma treated PVDF/PMMA/Attapulgite/hexagonal-Boron Nitride blends. Progr. Org. Coat. 131, 17–26 (2019)

    Article  Google Scholar 

  53. E. Dhanumalayan et al., Disparity in hydrophobic to hydrophilic nature of polymer blend modified by K2Ti6O13 as a function of air plasma treatment. Prog. Org. Coat. 111, 371–380 (2017)

    Article  CAS  Google Scholar 

  54. E. Ettah et al., Investigation of the thermal conductivity of polyvinyl chloride (PVC) ceiling material produced In Epz Calabar. For Appl. Trop. Clim. Zones 3, 34–38 (2016)

    Google Scholar 

  55. S.S. Humbe et al., Anomalous properties of plasma treated hexagonal Boron Nitride dispersed polymer nano blends. J. Polym. Res. 29(10), 430 (2022)

    Article  CAS  Google Scholar 

  56. D.M. Price, M. Jarratt, Thermal conductivity of PTFE and PTFE composites. Thermochim. Acta 392–393, 231–236 (2002)

    Article  Google Scholar 

  57. P. Homa, K. Wenelska, E. Mijowska, Enhanced thermal properties of poly(lactic acid)/MoS2/carbon nanotubes composites. Sci. Rep. 10(1), 740 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. H. Ribeiro et al., Enhanced thermal conductivity and mechanical properties of hybrid MoS2/h-BN polyurethane nanocomposites. J. Appl. Polym. Sci. 135(30), 46560 (2018)

    Article  Google Scholar 

  59. P. Jadhav, G.M. Joshi, Recent trends in Nitrogen doped polymer composites: a review. J. Polym. Res. 28(3), 1–16 (2021)

    Article  Google Scholar 

  60. X. Pan, M.G. Debije, A.P.H.J. Schenning, High thermal conductivity in anisotropic aligned polymeric materials. ACS Appl. Polym. Mater. 3(2), 578–587 (2021)

    Article  CAS  Google Scholar 

  61. M. Gresil et al., Thermal diffusivity mapping of graphene based polymer nanocomposites. Sci. Rep. 7(1), 5536 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the Institute of Chemical Technology Mumbai Marathwada Jalna for providing a doctoral fellowship. Research scholar Pratibha S. Jadhav is grateful to the Vellore Institute of Technology, Vellore (India), for providing the SEM characterisation facility.

Funding

The authors acknowledge funding from the Institute of Chemical Technology Mumbai Marathwada Jalna.

Author information

Authors and Affiliations

Authors

Contributions

PSJ: synthesis and manuscript writing, interpretation of data. GMJ: final analysis, supervised the work. SSH, RRD, and SK: helped in characterization.

Corresponding author

Correspondence to Girish M. Joshi.

Ethics declarations

Conflict of interest

We all authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, P.S., Humbe, S.S., Joshi, G.M. et al. Polymer Blend Nanoarchitectonics with Exfoliated Molybdenum Disulphide/Polyvinyl Chloride/Nitrocellulose. J Inorg Organomet Polym 33, 680–693 (2023). https://doi.org/10.1007/s10904-022-02518-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02518-3

Keywords

Navigation