Skip to main content
Log in

Some Important Parameters of LaFeO3-Polyvinyl Alcohol Polymer Nanocomposites Obtained from X-ray Diffraction and FT-IR Data

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The solid state method was used to prepare ceramic LaFeO3 (LFO) nanoparticles. The solution casting method was employed to create the nanocomposite thick film of this ceramic (as filler) with polyvinyl alcohol (PVA). These films were characterized by x-ray diffraction (XRD) and Fourier transform Infrared (FT-IR) spectroscopy techniques. The XRD technique verifies that our samples are in single phase with orthorhombic crystal structure. Powder X software was used to determine the lattice parameters, which were found to decrease with increase in the doping content. To measure the size of crystallites and strain in the LFO; peak broadening, the Williamson–Hall (W–H) method, and the size-strain approach were used. For all XRD reflection peaks, the physical parameters such as strain, stress, and energy density were calculated using the W–H plot, uniform deformation model (UDM), uniform stress deformation model (USDM), uniform deformation energy density model (UDEDM), and the size-strain plot method (SSP). FT-IR data show finger print function groups associated with this polymer. However slight shifts in these functional groups show the possible coulomb interactions with the ceramic oxygen atom. From this vibrational data, different parameters like force constant (K), the stiffness constant (C11 = C12), bulk modulus (B), rigidity modulus (R), Young’s modulus (Y), Poisson ratio (σ), longitudinal elastic wave velocity (Vl), transverse elastic wave velocity (Vt), mean elastic wave velocity (Vm), Debye temperature (θ*D and θD) and lattice energy (UL) were calculated. The variation in elastic parameters with different doping concentration has been observed and discussed. The various physical parameters obtained from these models were compared and a possible explanation was also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. A. Srinivasan, S. Bandyopadhyay, Advances in polymer materials and technology (CRC Press, Boca Raton, 2016)

    Book  Google Scholar 

  2. C.M. Hussain, S. Thomas, Handbook of polymer and ceramic nanotechnology (Springer International Publishing, Cham, 2020)

    Book  Google Scholar 

  3. N. Karmaker, H. Karmaker, R.A. Khan, A review on PVA based biodegradable films: a new hope for plastic pollution remediation. J. Asian Afr. Soc. Sci. Humanit. 7(1), 26–37 (2021)

    Google Scholar 

  4. F.A. Mir, A. Gani, K. Asokan, Gamma irradiation studies of composite thin films of poly vinyl alcohol and coumarin. RSC Adv. 6(2), 1554–1561 (2016)

    Article  CAS  Google Scholar 

  5. D. Feldman, Poly (vinyl alcohol) recent contributions to engineering and medicine. J. Compos. Sci. 4(4), 175 (2020)

    Article  CAS  Google Scholar 

  6. T.S. Gaaz, A.B. Sulong, M.N. Akhtar, A.A.H. Kadhum, A.B. Mohamad, A.A. Al-Amiery, Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 20(12), 22833–22847 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. B. Canimkurbey, C. Çakirlar, S. Piravadili Mucur, M. Yasin, S. Berber, Influence of Al2O3 nanoparticles incorporation on the dielectric properties of solution processed PVA films for organic field effect transistor applications. J. Mater. Sci.: Mater. Electron. 30(20), 18384–18390 (2019)

    CAS  Google Scholar 

  8. S. Moharana, S.K. Joshi, R.N. Mahaling, Enhanced dielectric and ferroelectric properties induced by Ag@ Pb (Zr, Ti) O3 in poly (vinyl alcohol) matrix composites: a solution casting approach. J. Appl. Polym. Sci. 134(48), 45583 (2017)

    Article  Google Scholar 

  9. N. Jain, V.K. Singh, S. Chauhan, A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films. J. Mech. Behav. Mater. 26(5–6), 213–222 (2017)

    Article  CAS  Google Scholar 

  10. M.J. Uddin, P.K. Alaboina, L. Zhang, S.J. Cho, A low-cost, environment-friendly lignin-polyvinyl alcohol nanofiber separator using a water-based method for safer and faster lithium-ion batteries. Mater. Sci. Eng. B 223, 84–90 (2017)

    Article  CAS  Google Scholar 

  11. G. Zhang, H. Chen, G. Yang et al., Preparation of in situ ZIF-9 grown on sodium alginate/polyvinyl alcohol hydrogels for enhancing Cu (II) adsorption from aqueous solutions. J. Inorg. Organomet. Polym. (2022). https://doi.org/10.1007/s10904-022-02463-1

    Article  Google Scholar 

  12. D. Khalafallah, M. Zhi, Z. Hong, Development trends on nickel-based electrocatalysts for direct hydrazine fuel cells. ChemCatChem 13(1), 81–110 (2021)

    Article  CAS  Google Scholar 

  13. D. Khalafallah, C. Ouyang, M. Zhi, Z. Hong, Heterostructured nickel-cobalt selenide immobilized onto porous carbon frameworks as an advanced anode material for urea electrocatalysis. ChemElectroChem 6(20), 5191–5202 (2019)

    Article  CAS  Google Scholar 

  14. D. Khalafallah, O.Y. Alothman, H. Fouad, K.A. Khalil, Hierarchical Co3O4 decorated PPy nanocasting core-shell nanospheres as a high performance electrocatalysts for methanol oxidation. Int. J. Hydrog. Energy 43(5), 2742–2753 (2018)

    Article  CAS  Google Scholar 

  15. D. Khalafallah, O.Y. Alothman, H. Fouad, K.A. Khalil, Nitrogen and carbon functionalized cobalt phosphide as efficient non-precious electrocatalysts for oxygen reduction reaction electrocatalysis in alkaline environment. J. Electroanal. Chem. 809, 96–104 (2018)

    Article  CAS  Google Scholar 

  16. D. Khalafallah, J. Miao, M. Zhi, Z. Hong, Structuring graphene quantum dots anchored CuO for high-performance hybrid supercapacitors. J. Taiwan Inst. Chem. Eng. 122, 168–175 (2021)

    Article  CAS  Google Scholar 

  17. D. Khalafallah, Q. Zou, M. Zhi, Z. Hong, Tailoring hierarchical yolk-shelled nickel cobalt sulfide hollow cages with carbon tuning for asymmetric supercapacitors and efficient urea electrocatalysis. Electrochim. Acta 350, 136399 (2020)

    Article  CAS  Google Scholar 

  18. M.A. Ehsan, D. Khalafallah, M. Zhi, Z. Hong, Synthesis of Au/Co9S8 composite aerogels by one-step sol–gel method as hydrogen evolution reaction electrocatalysts. J. Porous Mater. 28(1), 99–108 (2021)

    Article  CAS  Google Scholar 

  19. D. Khalafallah, M. Zhi, Z. Hong, Recent trends in synthesis and investigation of nickel phosphide compound/hybrid-based electrocatalysts towards hydrogen generation from water electrocatalysis. Top. Curr. Chem. 377(6), 1–48 (2019)

    CAS  Google Scholar 

  20. M. Dai Luu, N.N. Dao, D. Van Nguyen, N.C. Pham, T.D. Doan, A new perovskite-type NdFeO3 adsorbent: synthesis, characterization, and As (V) adsorption. Adv. Nat. Sci.: Nanosci. Nanotechnol. 7(2), 025015 (2016)

    Google Scholar 

  21. M.A.U. Khalid, S.W. Kim, J. Lee, A.M. Soomro, M.M. Rehman, B.G. Lee, K.H. Choi, Resistive switching device based on SrTiO3/PVA hybrid composite thin film as active layer. Polymer 189, 122183 (2020)

    Article  Google Scholar 

  22. J. Feng, T. Liu, Y. Xu, J. Zhao, Y. He, Effects of PVA content on the synthesis of LaFeO3 via sol–gel route. Ceram. Int. 37(4), 1203–1207 (2011)

    Article  CAS  Google Scholar 

  23. M. Theingi, K.T. Tun, N.N. Aung, Preparation, characterization and optical property of LaFeO3 nanoparticles via sol-gel combustion method. SciMed. J. 1(3), 151–157 (2019)

    Article  Google Scholar 

  24. P. Głuchowski, K. Oganisian, R. Tomala, A. Łukowiak, D. Karpinsky, D. Alikin, A. Kholkin, W. Stręk, Optical, dielectric and magnetic properties of La1−xNdxFeO3 powders and ceramics. Ceramics 2(1), 1–12 (2018)

    Article  Google Scholar 

  25. V.M. Gaikwad, P. Uikey, S.A. Acharya, Study of multi-functionality of lanthanum ferrite (LaFeO3). AIP Conf. Proc. 1665, 140046 (2015)

    Article  Google Scholar 

  26. A. Fossdal, M.-A. Einarsrud, T. Grande, Mechanical properties of LaFeO3 ceramics. J. Eur. Ceram. Soc. 25(6), 927–933 (2005)

    Article  CAS  Google Scholar 

  27. H. Liu, J. Zhu, D. Xiao, Preparation and characterization of LaFeO3 thin films on (100) SrTiO3 substrates by pulsed laser deposition. J. Adv. Dielectr. 1(03), 363–367 (2011)

    Article  CAS  Google Scholar 

  28. R. Kumar, R.J. Choudhary, M.W. Khan, J.P. Srivastava, C.W. Bao, H.M. Tsai, J.W. Chiou, K. Asokan, W.F. Pong, Structural, electrical transport and x-ray absorption spectroscopy studies of LaFe1−xNixO3 (x<06). J. Appl. Phys. 97(9), 093526 (2005)

    Article  Google Scholar 

  29. S.A. Ivanov, R. Tellgren, F. Porcher, T. Ericsson, A. Mosunov, P. Beran, S.K. Korchagina, P.A. Kumar, R. Mathieu, P. Nordblad, Preparation, structural, dielectric and magnetic properties of LaFeO3–PbTiO3 solid solutions. Mater. Res. Bull. 47(11), 3253–3268 (2012)

    Article  CAS  Google Scholar 

  30. P. Jain, S. Srivastava, Structural investigation and zero-field-cooled exchange bias in nanocrystalline LaFeO3. J. Supercond. Novel Magn. 29(8), 2089–2097 (2016)

    Article  CAS  Google Scholar 

  31. Y. Wang, J. Zhu, L. Zhang, X. Yang, L. Lu, X. Wang, Preparation and characterization of perovskite LaFeO3 nanocrystals. Mater. Lett. 60(13–14), 1767–1770 (2006)

    Article  CAS  Google Scholar 

  32. M. Kaewpanha, T. Suriwong, W. Wamae, P. Nunocha, Synthesis and characterization of Sr-doped LaFeO3 perovskite by sol-gel auto-combustion method. J. Phys.: Conf. Ser. 1259(1), 012017 (2019)

    CAS  Google Scholar 

  33. M. Idrees, M. Nadeem, M. Mehmood, M. Atif, K.H. Chae, M.M. Hassan, Impedance spectroscopic investigation of delocalization effects of disorder induced by Ni doping in LaFeO3. J. Phys. D Appl. Phys. 44(10), 105401 (2011)

    Article  Google Scholar 

  34. C.F. Holder, R.E. Schaak, Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13(7), 7359–7365 (2019)

    Article  PubMed  CAS  Google Scholar 

  35. S.A.A. Jabir, K.H. Harbbi, A comparative study of Williamson-Hall method and size-strain method through x-ray diffraction pattern of cadmium oxide nanoparticle. AIP Conf. Proc. 2307(1), 020015 (2020)

    Article  CAS  Google Scholar 

  36. H. Irfan, K.M. Racik, S. Anand, X-ray peak profile analysis of CoAl2O4 nanoparticles by Williamson-Hall and size-strain plot methods. Modern Electronic Materials 4, 31 (2018)

    Article  Google Scholar 

  37. D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson–Hall, Halder–Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study. Mater. Chem. Phys. 239, 122021 (2020)

    Article  CAS  Google Scholar 

  38. A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13(1), 251–256 (2011)

    Article  Google Scholar 

  39. S. Husain, A.O. Keelani, Structural properties and Williamson–Hall analysis of Mn doped SmFeO3. Mater. Today: Proc. 5(2), 5615–5622 (2018)

    CAS  Google Scholar 

  40. F.A. Wani, F.A. Mir, G.B. Vakil, SmFeO3-polyanaline composite: synthesis and its various characterizations. J. Inorg. Organomet. Polym Mater. 26(5), 1028–1036 (2016)

    Article  CAS  Google Scholar 

  41. M.A. Farrukh, K.M. Butt, K.K. Chong, W.S. Chang, Photoluminescence emission behavior on the reduced band gap of Fe doping in CeO2-SiO2 nanocomposite and photophysical properties. J. Saudi Chem. Soc. 23(5), 561–575 (2019)

    Article  CAS  Google Scholar 

  42. S.M. Patange, S.E. Shirsath, S.P. Jadhav, V.S. Hogade, S.R. Kamble, K.M. Jadhav, Elastic properties of nanocrystalline aluminum substituted nickel ferrites prepared by co-precipitation method. J. Mol. Struct. 1038, 40–44 (2013)

    Article  CAS  Google Scholar 

  43. S.A. Mazen, N.I. Abu-Elsaad, IR spectra, elastic and dielectric properties of Li–Mn ferrite. ISRN Condens. Matter Phys. 2012, 1–9 (2012)

    Article  Google Scholar 

  44. M.H. Abdellatif, A.A. Azab, Elastic properties of Cr-doped Mn ferrite. Bull. Natl. Res. Cent. 43(1), 1–8 (2019)

    Article  Google Scholar 

  45. R. Vishwarup, S.N. Mathad, Elastic properties of nano Mg1−xCoxFe2O4 (x = 0.15, 0.2, 0.25, 0.3, 0.35 and 0.4) synthesized by co-precipitation method. Mater. Sci. Energy Technol. 3, 559–565 (2020)

    CAS  Google Scholar 

  46. S.K. Paswan, S. Kumari, M. Kar, A. Singh, H. Pathak, J.P. Borah, L. Kumar, Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature. J. Phys. Chem. Solids 151, 109928 (2021)

    Article  CAS  Google Scholar 

  47. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99(6), 1727 (1955)

    Article  CAS  Google Scholar 

  48. S. Tariq, S. Saad, M.I. Jamil, S.M. Sohail Gilani, S. Mahmood Ramay, A. Mahmood, Ab initio study on half-metallic, electronic and thermodynamic attributes of LaFeO3. Eur. Phys. J. Plus 133(3), 1–10 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank UGC (for startup project), IUAC New Delhi for financial support to carry out this work.

Funding

Authors would like to thank UGC (for startup project), IUAC New Delhi for financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

The author FAM and FU confirms contribution to the study, design, creation, material collection, data analysis and experimental work to this manuscript. PAA, MHR, MMN, MAB, GS and SAR also perform data analysis and case study for this work. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Faheem Ullah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent to participate

The consent was given by all the respective authors to participate in this work.

Consent to publish

The authors affirm that the participants in this research work have provided consent for the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, F., Mir, F.A., Ahmad, P.A. et al. Some Important Parameters of LaFeO3-Polyvinyl Alcohol Polymer Nanocomposites Obtained from X-ray Diffraction and FT-IR Data. J Inorg Organomet Polym 32, 4694–4706 (2022). https://doi.org/10.1007/s10904-022-02479-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02479-7

Keywords

Navigation