Skip to main content
Log in

Octakis(Carboxyalkyl-Thioethyl)Silsesquioxanes and Derived Metal Complexes: Synthesis, Characterization and Catalytic Activity Assessments

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Two octakis(carboxyalkyl-thioalkyl)silsesquioxanes (COOH-PSx) were obtained by click photo-induced thiol-ene addition reactions between octavinyl-T8-silsesquioxane and thioalkylcarboxylic acids. Their structures were confirmed by elemental and spectral analyses and in one case by single-crystal X-ray diffraction. The natrium salts of COOH-PSx were used as very efficient ligands for Cu, Ni and Cd ions. The formation of transition metals complexes was confirmed by FT-IR spectroscopy, showing the coordination pattern, and by EDX semiquantitative elemental analysis. They were analyzed in terms of thermal stability, morphology and moisture sorption. The catalytic activity was tested in alkaline decomposition of hydrogen peroxide, the copper complexes showing the best activity, that is 40% conversion after ~ 40 min. A copper complex was also efficient as catalyst in photodecomposition of Congo Red under UV light, without additional oxidation agents or pH adjustments, showing discoloration efficiency of ca. 89% after 145 min and recycling ability. Thus, the results indicated the compounds reported here, obtained by simple and reproducible synthetic protocols, as efficient, stable and re-usable heterogeneous catalyst. The possibilities of structural diversification (by the nature of the functional groups and the metal ion) are wide and of the application potential.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Yu, X. Jiang, J. Yin, Macromolecules 45, 7135 (2012). https://doi.org/10.1021/ma301371h

    Article  CAS  Google Scholar 

  2. M. Vielhauer, P.J. Lutz, G. Reiter, R. Mülhaupt, J. Polym. Sci. Part A: Polym. Chem. 51, 947 (2013). https://doi.org/10.1002/pola.26458

    Article  CAS  Google Scholar 

  3. M. Dutkiewicz, H. Maciejewski, B. Marcieniec, Synthesis 12, 2019 (2009). https://doi.org/10.1055/s-0029-1216807

    Article  CAS  Google Scholar 

  4. Y. Du, H. Liu, Dalton Trans. 49, 5396 (2020). https://doi.org/10.1039/D0DT00587H

    Article  CAS  PubMed  Google Scholar 

  5. M. Ge, H. Liu, J. Mater. Chem. A 4, 16714 (2016). https://doi.org/10.1039/C6TA06656A

    Article  CAS  Google Scholar 

  6. M. Wu, R.A. Wu, R. Li, H. Qin, H. Zou, Anal. Chem. 82, 5447 (2010). https://doi.org/10.1021/ac1003147

    Article  CAS  PubMed  Google Scholar 

  7. M. Huang, K. Yue, J. Huang, C. Liu, Z. Zhou, J. Wang, K. Wu, W. Shan, A.-C. Shi, S.Z.D. Cheng, ACS Nano 12, 1868 (2018). https://doi.org/10.1021/acsnano.7b08687

    Article  CAS  PubMed  Google Scholar 

  8. H. Zhou, Q. Ye, J. Xu, Mater. Chem. Front. 1, 212 (2017). https://doi.org/10.1039/C6QM00062B

    Article  CAS  Google Scholar 

  9. F. Wang, X. Lu, Z. Li, C. He, Construction of organic optoelectronic materials by using polyhedral oligomeric silsesquioxanes (POSS), in Silicon Containing Hybrid Copolymers. ed. by C. He, Z. Li (Wiley, Hoboken, 2020)

    Google Scholar 

  10. M. Dascalu, M. Iacob, C. Tugui, A. Bele, G.T. Stiubianu, C. Racles, M. Cazacu, J. Appl. Polym. Sci. 138, 50161 (2021). https://doi.org/10.1002/app.50161

    Article  CAS  Google Scholar 

  11. D.B. Cordes, P.D. Lickiss, F. Rataboul, Chem. Rev. 110, 2081 (2010). https://doi.org/10.1021/cr900201r

    Article  CAS  PubMed  Google Scholar 

  12. K. Tanaka, Y. Chujo, J. Mater. Chem. 22, 1733 (2012). https://doi.org/10.1039/C1JM14231C

    Article  CAS  Google Scholar 

  13. Z. Li, B.H. Tan, G. Jin, K. Li, C. He, Polym. Chem. 5, 6740 (2014). https://doi.org/10.1039/C4PY00936C

    Article  CAS  Google Scholar 

  14. G. Li, L. Wang, H. Ni, C. Pittman, J. Inorg. Organomet. Polym. 11, 123 (2001). https://doi.org/10.1023/A:1015287910502

    Article  CAS  Google Scholar 

  15. R.M. Laine, M.F. Roll, Macromolecules 44, 1073 (2011). https://doi.org/10.1021/ma102360t

    Article  CAS  Google Scholar 

  16. D. Xu, L.S. Loo, K. Wang, J. Appl. Polym. Sci. 122, 427 (2011). https://doi.org/10.1002/app.34146

    Article  CAS  Google Scholar 

  17. D. Gnanasekaran, K. Madhavan, B.S.R. Reddy, J. Sci. Ind. Res. 68, 437 (2009)

    CAS  Google Scholar 

  18. F. dos Santos Franco, D. Silvestrini Fernandes, D. Ribeiro Do Carmo, Mater Sci. Eng. C 111, 110739 (2020). https://doi.org/10.1016/j.msec.2020.110739

    Article  CAS  Google Scholar 

  19. A.V.Y. Wang, H. Yang, S. Gupta, F. Hetsch, S.V. Kershaw, W.Y. Teoh, H. Li, A.L. Rogach, J. Phys. Chem. C 117, 1857 (2013). https://doi.org/10.1021/jp3112843

    Article  CAS  Google Scholar 

  20. I. Jerman, A. Š. Vuk, M. Koželj, B. Orel, J. Kovač, Langmuir 24, 5029 (2008). https://doi.org/10.1021/la7037262

    Article  CAS  PubMed  Google Scholar 

  21. D.J. Krug, R.M. Laine, A.C.S. Appl. Mater. Interfaces 9, 8378 (2017). https://doi.org/10.1021/acsami.6b16121

    Article  CAS  PubMed  Google Scholar 

  22. L.G. Li, R.D. Liang, Y.J. Li, H.Z. Liu, S.Y. Feng, J. Colloid Inter. Sci. 406, 30 (2013). https://doi.org/10.1016/j.jcis.2013.05.044

    Article  CAS  Google Scholar 

  23. M. Janssen, J. Wilting, C. Muller, D. Vogt, Angew. Chem. Int. Ed 49, 7738 (2010). https://doi.org/10.1002/anie.201001926

    Article  CAS  Google Scholar 

  24. A.I. Yalymov, A.N. Bilyachenko, M.M. Levitsky, A.A. Korlyukov, V.N. Khrustalev, L.S. Shul’pina, P.V. Dorovatovskii, M.A. Es’kova, F. Lamaty, X. Bantreil, B. Villemejeanne, J. Martinez, E.S. Shubina, Y.N. Kozlov, G.B. Shul’pin, Catalysts 7, 1 (2017). https://doi.org/10.20944/preprints201703.0039.v1

    Article  Google Scholar 

  25. M. Bialek, M. Pochwala, A. Franczyk, K. Czaja, B. Marciniec, Polym. Int. 66, 960 (2017). https://doi.org/10.1002/pi.5345

    Article  CAS  Google Scholar 

  26. J. Kaźmierczak, K. Kuciński, G. Hreczycho, Inorg. Chem. 56, 9337 (2017). https://doi.org/10.1021/acs.inorgchem.7b01504

    Article  CAS  PubMed  Google Scholar 

  27. P. Guillo, M.I. Lipschutz, M.E. Fasulo, T.D. Tilley, ACS Catal. 7, 2303 (2017). https://doi.org/10.1021/acscatal.7b00020

    Article  CAS  Google Scholar 

  28. M.M. Levitsky, A.I. Yalymov, A.N. Kulakova, A.N. Bilyachenko, J. Mol. Catal. A: Chem. 426, 297 (2017). https://doi.org/10.1016/j.molcata.2016.06.016

    Article  CAS  Google Scholar 

  29. B. Marciniec, I. Kownacki, A. Franczyk, M. Kubicki, DaltonTrans. 40, 5073 (2011). https://doi.org/10.1039/C0DT01631D

    Article  CAS  Google Scholar 

  30. W.W.M. Seino, J.E. Lofgreen, D.P. Puzzo, T. Manabe, G.A. Ozin, J. Am. Chem. Soc. 133, 18082 (2011). https://doi.org/10.1021/ja2080136

    Article  CAS  PubMed  Google Scholar 

  31. S.-W. Kuo, H.-F. Lee, W.-J. Huang, K.-U. Jeong, F.-C. Chang, Macromolecules 42, 1619 (2009). https://doi.org/10.1021/ma802370y

    Article  CAS  Google Scholar 

  32. O. Monticelli, A. Fina, E.S. Cozza, M. Prato, V. Bruzzo, J. Mater. Chem. 21, 18049 (2011). https://doi.org/10.1039/C1JM13553H

    Article  CAS  Google Scholar 

  33. X. Wang, V. Ervithayasuporn, Y. Zhang, Y. Kawakami, Chem. Commun. 47, 1282 (2011). https://doi.org/10.1039/C0CC03359F

    Article  CAS  Google Scholar 

  34. W. Yang, D. Wang, L. Li, H. Liu, Eur. J. Inorg. Chem. 18, 2976 (2014). https://doi.org/10.1002/ejic.201402156

    Article  CAS  Google Scholar 

  35. J. Furgal, J. Jung, T. Goodson, R. Laine, J. Am. Chem. Soc. 135, 12259 (2013). https://doi.org/10.1021/ja4043092

    Article  CAS  PubMed  Google Scholar 

  36. B.P. Nair, D. Vaikkath, P.D. Nair, Langmuir 30, 340 (2014). https://doi.org/10.1021/la4036997

    Article  CAS  PubMed  Google Scholar 

  37. K.Y. Pu, K. Li, B. Liu, Adv. Mater. 22, 643 (2010). https://doi.org/10.1002/adma.200902409

    Article  CAS  PubMed  Google Scholar 

  38. M. Liras, M. Pintado-Sierra, F. Amat-Guerri, R. Sastre, J. Mater. Chem. 21, 12803 (2011). https://doi.org/10.1039/C1JM11261A

    Article  CAS  Google Scholar 

  39. L. Sun, Y. Liu, S. Dang, Z. Wang, J. Liu, J. Fu, L. Shi, New J. Chem. 40, 209 (2016). https://doi.org/10.1039/C5NJ02105G

    Article  CAS  Google Scholar 

  40. V. Ervithayasuporn, J. Abe, X. Wang, T. Masushima, H. Murata, Y. Kawakami, Tetrahedron 66, 9348 (2010). https://doi.org/10.1016/j.tet.2010.10.009

    Article  CAS  Google Scholar 

  41. X. Yang, J.D. Froehlich, H.S. Chae, S. Li, A. Mochizuki, G.E. Jabbour, Adv. Funct. Mater. 19, 2623 (2009). https://doi.org/10.1002/adfm.200900050

    Article  CAS  Google Scholar 

  42. M.Y. Lo, C. Zhen, M. Lauters, G.E. Jabbour, A. Sellinger, J. Am. Chem. Soc. 129, 5808 (2007). https://doi.org/10.1021/ja070471m

    Article  CAS  PubMed  Google Scholar 

  43. E.G. Vieira, I.V. Soares, G. Pires, R.A.V. Ramos, D.R. Do Carmo, N.L. Dias Filho, Chem. Eng. J. 264, 77 (2015). https://doi.org/10.1016/j.cej.2014.11.050

    Article  CAS  Google Scholar 

  44. E.G. Vieira, R.O. Silva, D.R. Do Carmo, E.F. Junior, N.L. Dias Filho, Mater. Chem. Phys. 191, 197 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.045

    Article  CAS  Google Scholar 

  45. H. Liu, H. Liu, J. Mater. Chem. A 5, 9156 (2017). https://doi.org/10.1039/C7TA01255A

    Article  CAS  Google Scholar 

  46. J. Liu, H. Yu, Q. Liang, Y. Liu, J. Shen, Q. Bai, J. Colloid Interface Sci. 497, 402 (2017). https://doi.org/10.1016/j.jcis.2017.03.028

    Article  CAS  PubMed  Google Scholar 

  47. J. Wang, R. Zhang, X. Yang, X. Liu, H. Zhang, Talanta 176, 308 (2018). https://doi.org/10.1016/j.talanta.2017.08.016

    Article  CAS  PubMed  Google Scholar 

  48. J.P. Winiarski, M.R. De Barros, H.A. Magosso, C.L. Jost, Electrochim. Acta 251, 522 (2017). https://doi.org/10.1016/j.electacta.2017.08.171

    Article  CAS  Google Scholar 

  49. D.R. Do Carmo, D.R. Silvestrini, T.F.S. Da Silveira, L.R. Cumba, N.L. Dias Filho, L.A. Soares, Mater Sci. Eng. C. 57, 24 (2015). https://doi.org/10.1016/j.msec.2015.07.023

    Article  CAS  Google Scholar 

  50. K. Xiang, Y. Li, C. Xu, S. Li, J. Mater. Chem. C 4, 5578 (2016). https://doi.org/10.1039/C6TC01422D

    Article  CAS  Google Scholar 

  51. C. Petit, K.-Y.A. Lin, A.-H.A. Park, Langmuir 29, 12234 (2013). https://doi.org/10.1021/la4007923

    Article  CAS  PubMed  Google Scholar 

  52. Z. Li, J. Kong, F.K. Wang, C. He, J. Mater. Chem. C 5, 5283 (2017). https://doi.org/10.1039/C7TC01327B

    Article  CAS  Google Scholar 

  53. Z. Wei, X. Luo, L. Zhang, M. Luo, Microporous Mesoporous Mater. 193, 35 (2014). https://doi.org/10.1016/j.micromeso.2014.03.010

    Article  CAS  Google Scholar 

  54. D. Neumann, M. Fisher, L. Tran, J.G. Matisons, J. Am. Chem. Soc. 124, 13998 (2002). https://doi.org/10.1021/ja0275921

    Article  CAS  PubMed  Google Scholar 

  55. J. Wu, P.T. Mather, Polym. Rev. 49, 25 (2009). https://doi.org/10.1080/15583720802656237

    Article  CAS  Google Scholar 

  56. C. Wang, L. Zhou, Q. Du, T. Shan, K. Zheng, J. He, H. He, S. Chen, X. Wang, Polym. Int. 71, 379 (2022). https://doi.org/10.1002/pi.6317

    Article  CAS  Google Scholar 

  57. Z.W. Teng, B.T. Wang, Y.Y. Hu, D.Q. Xu, Chin. Chem. Lett. 30, 717 (2019). https://doi.org/10.1016/j.cclet.2018.08.017

    Article  CAS  Google Scholar 

  58. A. Romo-Uribe, L. Albanil, Eur. Polym. J. 99, 350 (2018). https://doi.org/10.1016/j.eurpolymj.2017.12.033

    Article  CAS  Google Scholar 

  59. A. Romo-Uribe, L. Albanil, ACS Appl. Mater. Interfaces. 11, 24447 (2019). https://doi.org/10.1021/acsami.9b06672

    Article  CAS  PubMed  Google Scholar 

  60. F. dos Santos Franco, M. Santos Peixoto, A. dos Santos Felipe, D.R. do Carmo, Silicon (2022). https://doi.org/10.1007/s12633-022-01659-x

    Article  Google Scholar 

  61. A. Akbari, N. Arsalani, Polym. Plast. Technol. Eng. 55, 1586 (2016). https://doi.org/10.1080/03602559.2016.1163591

    Article  CAS  Google Scholar 

  62. I.V. Soares, E.G. Vieira, L. Newton Filho, A.C. Bastos, N.C. da Silva, E.F. Garcia, L.J.A. Lima, Chem. Eng. J. 218, 405 (2013). https://doi.org/10.1016/j.cej.2012.11.126

    Article  CAS  Google Scholar 

  63. E.G. Vieira, I.V. Soares, G. Pires, R.A. Ramos, D.R. do Carmo, Chem. Eng. J. 264, 77 (2015). https://doi.org/10.1016/j.cej.2014.11.050

    Article  CAS  Google Scholar 

  64. B. Eftekhari-Sis, A. Akbari, P.Y. Motlagh, Z. Bahrami, N. Arsalani, J. Inorg. Organomet. Polym. Mater. 28, 1728 (2018). https://doi.org/10.1007/s10904-018-0820-0

    Article  CAS  Google Scholar 

  65. G.Ö. Kayan, A. Kayan, J. Inorg. Organomet. Polym. Mater. (2022). https://doi.org/10.1007/s10904-022-02288-y

    Article  Google Scholar 

  66. Q. Ge, H. Liu, Chem. Eng. J. 428, 131370 (2022). https://doi.org/10.1016/j.cej.2021.131370

    Article  CAS  Google Scholar 

  67. A. Santiago-Portillo, V. Cina, E. Carbonell, L. Fusaro, V. Lemaur, R. Lazzaroni, M. Gruttadauria, F. Giacalone, C. Aprile, Mater. Adv. 3, 570 (2022). https://doi.org/10.1039/D1MA00801C

    Article  CAS  Google Scholar 

  68. E. Carbonell, L.A. Bivona, L. Fusaro, C. Aprile, Inorg. Chem. 56, 6393 (2017). https://doi.org/10.1021/acs.inorgchem.7b00471

    Article  CAS  PubMed  Google Scholar 

  69. V. Cinà, E. Carbonell, L. Fusaro, H. Garcıá, M. Gruttadauria, F. Giacalone, C. Aprile, ChemPlusChem 3, 391 (2020). https://doi.org/10.1002/cplu.201900575

    Article  CAS  Google Scholar 

  70. C.-C. Cheng, Y.-L. Chu, C.-W. Chu, D.-J. Lee, J. Mater. Chem. C 4, 6461 (2016). https://doi.org/10.1039/C6TC01989G

    Article  CAS  Google Scholar 

  71. S. Wang, S. Guang, H. Xu, F. Kea, RSC Adv. 5, 1070 (2015). https://doi.org/10.1039/c4ra10275d

    Article  CAS  Google Scholar 

  72. X. Zang, L. Cai, Y. Yuan, Z. Li, J. Inorg. Organomet. Polym. 25, 975 (2015). https://doi.org/10.1007/s10904-015-0201-x

    Article  CAS  Google Scholar 

  73. K. Rózga-Wijas, J. Chojnowski, J. Inorg. Organomet. Polym. 22, 588 (2012). https://doi.org/10.1007/s10904-012-9652-5

    Article  CAS  Google Scholar 

  74. C.E. Hoyle, C.N. Bowman, Angew. Chem. Int. Ed. 49, 1540 (2010). https://doi.org/10.1002/anie.200903924

    Article  CAS  Google Scholar 

  75. L. Xue, L. Li, S. Feng, H. Liu, J. Organomet. Chem. 783, 49 (2015). https://doi.org/10.1016/j.jorganchem.2015.01.028

    Article  CAS  Google Scholar 

  76. L. Li, S. Feng, H. Liu, J. Ceram. Soc. JAPAN 123, 719 (2015). https://doi.org/10.2109/jcersj2.123.719

    Article  CAS  Google Scholar 

  77. H. Liu, S. Kondo, N. Takeda, M. Unno, J. Am. Chem. Soc. 130, 10074 (2008). https://doi.org/10.1021/ja803513n

    Article  CAS  PubMed  Google Scholar 

  78. A. Boullanger, G. Gracy, N. Bibent, S. Devautour-Vinot, S. Clément, A. Mehdi, Eur. J. Inorg. Chem. (2012). https://doi.org/10.1002/ejic.201101037

    Article  Google Scholar 

  79. Rigaku Oxford Diffraction (2015) CrysAlisPro Software system, version 1.171.38.46, Rigaku Corporation, Oxford, UK

  80. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, J. Appl. Crystallogr. 42, 339 (2009). https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  81. G. Sheldrick, Acta Cryst. A 71, 3 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  82. G. Sheldrick, Acta Cryst. C 71, 3 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  83. J.R. Goldstein, A.C.C. Tseung, J. Catal. 32, 452 (1974). https://doi.org/10.1016/0021-9517(74)90096-7

    Article  CAS  Google Scholar 

  84. S.K. Yadav, P. Jeevanandam, J Nanopart Res. 18, 195 (2016). https://doi.org/10.1007/s11051-016-3502-2

    Article  CAS  Google Scholar 

  85. C. Rissing, D.Y. Son, Organometallics 27, 5394 (2008). https://doi.org/10.1021/om8003527

    Article  CAS  Google Scholar 

  86. A.M.-C. Dumitriu, M. Cazacu, A. Bargan, M. Balan, N. Vornicu, C.-D. Varganici, S. Shova, J. Organomet. Chem. 799–800, 195 (2015). https://doi.org/10.1016/j.jorganchem.2015.09.025

    Article  CAS  Google Scholar 

  87. A.V. Zakharov, S.L. Masters, D.A. Wann, S.A. Shlykov, G.V. Girichev, S. Arrowsmith, D.B. Cordes, P.D. Lickiss, A.J.P. White, Dalton Trans. 39, 6960 (2010). https://doi.org/10.1039/C000664E

    Article  CAS  PubMed  Google Scholar 

  88. N.L. Dias Filho, F.C.M. Portugal, J.M.F. Nogueira, P. Brandaeo, V. Felix, P.D. Vaz, C.D. Nunes, L.F. Veiros, M.J. Villa de Brito, M.J. Calhorda, Organometallics 31, 4495 (2012). https://doi.org/10.1021/om3003043

  89. K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, Part B: Applications in coordination, organometallic, and bioinorganic chemistry, 6th edn. (John Wiley & Sons Inc, Hoboken, 2009)

    Google Scholar 

  90. S. Saliba, P. Ruch, W. Volksen, T.P. Magbitang, G. Dubois, B. Michel, Microporous Mesoporous Mater. 226, 221 (2016). https://doi.org/10.1016/j.micromeso.2015.12.029

    Article  CAS  Google Scholar 

  91. H.N. Sharma, Y. Sun, E.A. Glascoe, Sci. Rep. 10, 17852 (2020). https://doi.org/10.1038/s41598-020-74898-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. C. Racles, M.-F. Zaltariov, M. Iacob, M. Silion, M. Avadanei, A. Bargan, Appl. Catal. B 205, 78 (2017). https://doi.org/10.1016/j.apcatb.2016.12.034

    Article  CAS  Google Scholar 

  93. R. Abdullah Mirzaie, F. Kamrani, A. Anaraki Firooz, A.A. Khodadadi, Mater Chem. Phys. 133, 311 (2012). https://doi.org/10.1016/j.matchemphys.2012.01.029

    Article  CAS  Google Scholar 

  94. J. Wang, R. Li, Z. Zhang, W. Sun, R. Xu, Y. Xie, Z. Xing, X. Zhang, Appl. Catal. A Gen. 334, 227 (2008). https://doi.org/10.1016/j.apcata.2007.10.009

    Article  CAS  Google Scholar 

  95. N. Muhd Julkapli, S. Bagheri, S. Bee Abd Hamid, Sci. World J. 692307 (2014). https://doi.org/10.1155/2014/692307

  96. C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Energy Environ. Sci. 7, 2831 (2014). https://doi.org/10.1039/C4EE01299B

    Article  CAS  Google Scholar 

  97. R. Ramakrishnan, S. Kalaivani, J. Amala Infant Joice, T. Sivakumar, Appl. Surf. Sci. 258, 2515 (2012). https://doi.org/10.1016/j.apsusc.2011.10.085

    Article  CAS  Google Scholar 

  98. M. Farbod, M. Khademalrasool, Powder Technol. 214, 344 (2011). https://doi.org/10.1016/j.powtec.2011.08.026

    Article  CAS  Google Scholar 

  99. R. Djellabi, M.F. Ghorab, G. Cerrato, S. Morandi, S. Gatto, V. Oldani, A. Di Michele, C.L. Bianchi, J. Photochem. Photobiol. A Chem. 295, 57 (2014). https://doi.org/10.1016/j.jphotochem.2014.08.017

    Article  CAS  Google Scholar 

  100. L. Curkovic, D. Ljubas, H. Juretic, React. Kinet. Mech. Catal. 99, 201 (2010). https://doi.org/10.1007/s11144-009-0098-x

    Article  CAS  Google Scholar 

  101. R.T. Thomas, V. Nair, N. Sandhyarani, Colloids Surf. A. 422, 1 (2013). https://doi.org/10.1016/j.colsurfa.2013.01.017

    Article  CAS  Google Scholar 

  102. M.L. de Souza, D.C. Tristao, P. Corio, RSC Adv. 4, 23351 (2014). https://doi.org/10.1039/C4RA03521F

    Article  Google Scholar 

  103. S.S.F. Carvalho, A.C.C. Rodrigues, J.F. Lima, N.M.F. Carvalho, Inorganica Chim. Acta 512, 119924 (2020). https://doi.org/10.1016/j.ica.2020.119924

    Article  CAS  Google Scholar 

  104. Z.-L. Xie, W.-X. Jiang, S.-Z. Zhan, S.-P. Wu, Inorg. Chem. Commun. 107, 107464 (2019). https://doi.org/10.1016/j.inoche.2019.107464

    Article  CAS  Google Scholar 

  105. L. Li, S. Zhu, R. Hao, J.J. Wang, E.C. Yang, X.J. Zhao, Dalton Trans. 47, 12726 (2018). https://doi.org/10.1039/C8DT02803F

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI–UEFISCDI, project number PN-III-P2-2.1-PED-2019-3652 (Contract 320/2020, 3DETSi) and project number PN-III-P2-2.1-PED-2019-1885 (Contract 463/2020, DYMATCO).

Author information

Authors and Affiliations

Authors

Contributions

MD (conceptualization, project administration, supervision, writing–original draft, writing–review & editing), ACS (formal analysis, investigation, visualization), AB (investigation, visualization), AMM (investigation, visualization), AB (investigation, visualization), CDV (investigation, validation), GTS (investigation, visualization, funding acquisition), CR (investigation, validation, writing-original draft), SS (investigation, validation), MC (investigation, validation, writing-original draft, funding acquisition).

Corresponding author

Correspondence to Mihaela Dascalu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1974 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dascalu, M., Stoica, AC., Bele, A. et al. Octakis(Carboxyalkyl-Thioethyl)Silsesquioxanes and Derived Metal Complexes: Synthesis, Characterization and Catalytic Activity Assessments. J Inorg Organomet Polym 32, 3955–3970 (2022). https://doi.org/10.1007/s10904-022-02408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02408-8

Keywords

Navigation