Skip to main content
Log in

Nanoarchitectonics: Porous Hydrogel as Bio-sorbent for Effective Remediation of Hazardous Contaminants

  • Topical Reviews
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The increasing use of heavy metals, dyes, and other metallic or chemical elements causes crucial environmental pollution. Sewage that contains these heavy metals and dyes is discharged into the atmosphere and goes directly into the food cycle, causing cancerous diseases and health deterioration in living organisms. The supreme concern of today’s research is to treat wastewater and effectively remove the hazardous dye molecules from aqueous media and other environmental matrices. Nowadays, technologies are applied to rectify organic and inorganic pollutants from sewage. Among them, adsorption is a fascinating way because it is environmentally friendly, feasible, and economical biomaterials. Chitosan (CS) as bio-sorbent is endowed with valuable characteristics, such as biodegradability, biocompatibility, high reactivity, low-cost, and functional groups (–OH and NH2) on its surface. CS is used for many applications, either as a single component or composite form. The use of CS as bio-adsorbents is beneficial over regular adsorbents. Chitosan-based hydrogel is one of the very important bio-adsorbents. All these bio-adsorbents are highly used to eradicate toxic dyes, digest harmful industrial sewage, and eliminate pesticides, climatic hazardous waste, and contaminated materials from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reprinted from Ref. [99] with permission from Elsevier. License Number: 5302601263547

Fig. 6 

Reprinted from Ref. [127] with permission from Elsevier. License Number: 5302601468132

Fig. 7

Reprinted from Ref. [130] with permission from Elsevier. License Number: 5302610365877

Fig. 8

Reprinted from Ref. [135] with permission from Elsevier. License Number: 5302610521815

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

CS:

Chitosan

CPL:

Clinoptilolite

GA:

Glutaraldehyde

IDM:

Indomethacin

PVA:

Polyvinyl acetate

CMC:

Carboxy methyl cellulose

NFC:

Nanofibrillated quaternized cellulose

AAm:

Acrylamide

HECS:

Hydroxyethyl chitosan

PMMA:

Poly methyl meth acrylate

GO:

Graphene oxide

PAA:

Poly acrylic acid

II-CCs:

Ion-imprinted cryo-composites

HECS:

Hydroxyethyl chitosan

CRB:

Carbopol

HA:

Hyaluronic acid

HPMC:

Hydroxy propyl methylcellulose

F-T:

Freezing–thawing

HAP:

Hydroxyapatite

GEL:

Gelatin

MMTNS:

Montmorillonite nanosheets

SEM:

Scanning electron microscope

TGA:

Thermogravimetric analysis

FTIR:

Fourier Transform Infra-red spectroscopy

XPS:

X-ray photoelectron spectroscopy

EDS:

Energy dispersive spectroscopy

EBT:

Eriochrome black tea

HNT:

Halloysite nanotubes

CNT:

Carbon nanotubes

Rh B:

Rhodamine B

OX:

Oxalic acid

TPP:

Tri poly phosphate

EPI:

Epichlorohydrin

References

  1. T.M.S.U. Gunathilake, Y.C. Ching, C.H. Chuah, H.A. Illias, K.Y. Ching, R. Singh, L. Nai-Shang, Influence of a nonionic surfactant on curcumin delivery of nanocellulose reinforced chitosan hydrogel. Int. J. Biol. Macromol. 118, 1055–1064 (2018)

    Article  Google Scholar 

  2. P. Duan, S. Khan, N. Ali, M.A. Shereen, R. Siddique, B. Ali et al., Biotransformation fate and sustainable mitigation of a potentially toxic element of mercury from environmental matrices. Arab. J. Chem. 13, 6949–6965 (2020)

    Article  CAS  Google Scholar 

  3. D. Cui, P. Zhang, H. Li, Z. Zhang, Y. Song, Z. Yang, The dynamic changes of arsenic biotransformation and bioaccumulation in muscle of freshwater food fish crucian carp during chronic dietborne exposure. J. Environ. Sci. 100, 74–81 (2021)

    Article  CAS  Google Scholar 

  4. A. Nandi, D.K. Chowdhuri, Cadmium mediated redox modulation in germline stem cells homeostasis affects reproductive health of Drosophila males. J. Hazard. Mater. 402, 123737 (2021)

    Article  CAS  PubMed  Google Scholar 

  5. P.A. Kobielska, A.J. Howarth, O.K. Farha, S. Nayak, Metal–organic frameworks for heavy metal removal from water. Coord. Chem. Rev. 358, 92–107 (2018)

    Article  CAS  Google Scholar 

  6. M. Costa, B. Henriques, J. Pinto, E. Fabre, T. Viana, N. Ferreira et al., Influence of salinity and rare earth elements on simultaneous removal of Cd, Cr, Cu, Hg, Ni and Pb from contaminated waters by living macroalgae. Environ. Pollut. 266, 115374 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. Y.L. Cho, Y.C. Lee, L.C. Hsu, C.C. Wang, P.C. Chen, S.L. Liu et al., Molecular mechanisms for Pb removal by Cyanidiales: a potential biomaterial applied in thermo-acidic conditions. Chem. Eng. J. 401, 125828 (2020)

    Article  CAS  Google Scholar 

  8. N. Ali, H. Zaman, M. Bilal, M.S. Nazir, H.M. Iqbal, Environmental perspectives of interfacially active and magnetically recoverable composite materials—a review. Sci. Total Environ. 670, 523–538 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. A. Khan, N. Ali, M. Bilal, S. Malik, S. Badshah, H. Iqbal, Engineering functionalized chitosan-based sorbent material: characterization and sorption of toxic elements. Appl. Sci. 9(23), 5138 (2019)

    Article  CAS  Google Scholar 

  10. B. Zhang, P. Li, H. Zhang, X. Li, L. Tian, H. Wang et al., Red-blood-cell-like BSA/Zn3 (PO4)2 hybrid particles: preparation and application to adsorption of heavy metal ions. Appl. Surf. Sci. 366, 328–338 (2016)

    Article  CAS  Google Scholar 

  11. B. Zhang, H. Zhang, L. Zhou, N. Ali, W. Geng, Q. Zhang, Preparation of flower-like Co3O4/Fe3O4 magnetic microspheres for photodegradation of RhB under UV light. Funct. Mater. Lett. 6(06), 1350052 (2013)

    Article  Google Scholar 

  12. S. Zhang, P. Shen, M. Ge, X. Zhu, N. Ali, L. Ni, Fabricating Fe2TiO5 hollow microspheres with enhanced visible light photocatalytic activity. Mater. Res. Express 6(9), 095505 (2019)

    Article  CAS  Google Scholar 

  13. V.K. Gupta, A. Nayak, S. Agarwal, Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ. Eng. Res. 20(1), 1–18 (2015)

    Article  Google Scholar 

  14. H. Khan, K. Gul, B. Ara, A. Khan, N. Ali, N. Ali, M. Bilal, Adsorptive removal of acrylic acid from the aqueous environment using raw and chemically modified alumina: batch adsorption, kinetic, equilibrium and thermodynamic studies. J. Environ. Chem. Eng. 8(4), 103927 (2020)

    Article  CAS  Google Scholar 

  15. I. Khan, K. Saeed, N. Ali, I. Khan, B. Zhang, M. Sadiq, Heterogeneous photodegradation of industrial dyes: an insight to different mechanisms and rate affecting parameters. J. Environ. Chem. Eng. 8, 104364 (2020)

    Article  CAS  Google Scholar 

  16. E. Issaka, F.O. Fapohunda, J.N.O. Amu-Darko, L. Yeboah, S. Yakubu, S. Varjani et al., Biochar-based composites for remediation of polluted wastewater and soil environments: challenges and prospects. Chemosphere 297, 134163 (2022)

    Article  CAS  PubMed  Google Scholar 

  17. B.B. Mathew, M. Jaishankar, V.G. Biju, K.N. Beeregowda, Role of bioadsorbents in reducing toxic metals. J. Toxicol. 2016, 1–13 (2016)

    Article  Google Scholar 

  18. L. Fei, M. Bilal, S.A. Qamar, H.M. Imran, A. Riasat, M. Jahangeer et al., Nano-remediation technologies for the sustainable mitigation of persistent organic pollutants. Environ. Res. 211, 113060 (2022)

    Article  CAS  PubMed  Google Scholar 

  19. F. Ali, N. Ali, I. Bibi, A. Said, S. Nawaz, Z. Ali et al., Adsorption isotherm, kinetics and thermodynamic of acid blue and basic blue dyes onto activated charcoal. Case Stud. Chem. Environ. Eng. 2, 100040 (2020)

    Article  Google Scholar 

  20. N. Ali, F. Ali, R. Khurshid, Z. Ali, A. Afzal, M. Bilal et al., TiO2 Nanoparticles and epoxy-TiO2 nanocomposites: a review of synthesis, modification strategies, and photocatalytic potentialities. J. Inorg. Organomet. Polym Mater. 30, 4829–4846 (2020)

    Article  CAS  Google Scholar 

  21. N. Ali, F. Ali, A. Said, T. Begum, M. Bilal, A. Rab et al., Characterization and deployment of surface-engineered cobalt ferrite nanospheres as photocatalyst for highly efficient remediation of alizarin red S dye from aqueous solution. J. Inorg. Organomet. Polym Mater. 30(12), 5063–5073 (2020)

    Article  CAS  Google Scholar 

  22. N. Ali, A. Khan, M. Bilal, S. Malik, S. Badshah, H. Iqbal, Chitosan-based bio-composite modified with thiocarbamate moiety for decontamination of cations from the aqueous media. Molecules 25(1), 226 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  23. N. Ali, A. Khan, S. Malik, S. Badshah, M. Bilal, H.M. Iqbal, Chitosan-based green sorbent material for cations removal from an aqueous environment. J. Environ. Chem. Eng. 8(5), 104064 (2020)

    Article  CAS  Google Scholar 

  24. N. Ali, S. Uddin, A. Khan, S. Khan, S. Khan, N. Ali et al., Regenerable chitosan-bismuth cobalt selenide hybrid microspheres for mitigation of organic pollutants in an aqueous environment. Int. J. Biol. Macromol. 161, 1305–1317 (2020)

    Article  CAS  PubMed  Google Scholar 

  25. A. Nawaz, A. Khan, N. Ali, P. Mao, X. Gao, N. Ali et al., Synthesis of ternary-based visible light nano-photocatalyst for decontamination of organic dyes-loaded wastewater. Chemosphere 289, 133121 (2022)

    Article  CAS  PubMed  Google Scholar 

  26. R. Wang, X. Zhang, J. Zhu, J. Bai, L. Gao, S. Liu, T. Jiao, Facile preparation of self-assembled chitosan-based composite hydrogels with enhanced adsorption performances. Colloids Surf. A 598, 124860 (2020)

    Article  CAS  Google Scholar 

  27. A. Nawaz, A. Khan, N. Ali, N. Ali, M. Bilal, Fabrication and characterization of new ternary ferrites-chitosan nanocomposite for solar-light driven photocatalytic degradation of a model textile dye. Environ. Technol. Innov. 20, 101079 (2020)

    Article  CAS  Google Scholar 

  28. C.M. Ghimbeu, V.A. Luchnikov, Hierarchical porous nitrogen-doped carbon beads derived from biosourced chitosan polymer. Microporous Mesoporous Mater. 263, 42–52 (2018)

    Article  Google Scholar 

  29. S. Zeb, N. Ali, Z. Ali, M. Bilal, B. Adalat, S. Hussain et al., Silica-based nanomaterials as designer adsorbents to mitigate emerging organic contaminants from water matrices. J. Water Process Eng. 38, 101675 (2020)

    Article  Google Scholar 

  30. Y. Yang, N. Ali, A. Khan, S. Khan, S. Khan, H. Khan et al., Chitosan-capped ternary metal selenide nanocatalysts for efficient degradation of Congo red dye in sunlight irradiation. Int. J. Biol. Macromol. 167, 169–181 (2021)

    Article  CAS  PubMed  Google Scholar 

  31. M.M. Lazar, I.A. Dinu, M. Silion, E.S. Dragan, M.V. Dinu, Could the porous chitosan-based composite materials have a chance to a “NEW LIFE” after Cu (II) ion binding? Int. J. Biol. Macromol. 131, 134–146 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. M.V. Dinu, M. Přádný, E.S. Drăgan, J. Michálek, Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohyd. Polym. 94(1), 170–178 (2013)

    Article  CAS  Google Scholar 

  33. V.I. Lozinsky, A brief history of polymeric cryogels, in Polymeric Cryogels. (Springer, Cham, 2014), pp. 1–48

    Google Scholar 

  34. A. Memic, T. Colombani, L.J. Eggermont, M. Rezaeeyazdi, J. Steingold, Z.J. Rogers et al., Latest advances in cryogel technology for biomedical applications. Adv. Ther. 2(4), 1800114 (2019)

    Article  Google Scholar 

  35. M.V. Dinu, A.I. Cocarta, E.S. Dragan, Synthesis, characterization and drug release properties of 3D chitosan/clinoptilolite biocomposite cryogels. Carbohyd. Polym. 153, 203–211 (2016)

    Article  CAS  Google Scholar 

  36. E.S. Dragan, A.I. Cocarta, M. Gierszewska, Designing novel macroporous composite hydrogels based on methacrylic acid copolymers and chitosan and in vitro assessment of lysozyme controlled delivery. Colloids Surf. B 139, 33–41 (2016)

    Article  CAS  Google Scholar 

  37. E.S. Dragan, M.V. Dinu, Advances in porous chitosan-based composite hydrogels: synthesis and applications. React. Funct. Polym. 146, 104372 (2020)

    Article  CAS  Google Scholar 

  38. M.T. Khorasani, A. Joorabloo, A. Moghaddam, H. Shamsi, Z. MansooriMoghadam, Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int. J. Biol. Macromol. 114, 1203–1215 (2018)

    Article  CAS  PubMed  Google Scholar 

  39. Y. Xie, Z.X. Yi, J.X. Wang, T.G. Hou, Q. Jiang, Carboxymethyl konjac glucomannan-crosslinked chitosan sponges for wound dressing. Int. J. Biol. Macromol. 112, 1225–1233 (2018)

    Article  CAS  PubMed  Google Scholar 

  40. L. Keawchaoon, R. Yoksan, Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf. B 84(1), 163–171 (2011)

    Article  CAS  Google Scholar 

  41. E. El-Meliegy, N.I. Abu-Elsaad, A.M. El-Kady, M.A. Ibrahim, Improvement of physico–chemical properties of dextran–chitosan composite scaffolds by addition of nano-hydroxyapatite. Sci. Rep. 8(1), 1–10 (2018)

    Article  CAS  Google Scholar 

  42. Y. Chen, J. Ru, B. Geng, H. Wang, C. Tong, C. Du et al., Charge-functionalized and mechanically durable composite cryogels from Q-NFC and CS for highly selective removal of anionic dyes. Carbohyd. Polym. 174, 841–848 (2017)

    Article  CAS  Google Scholar 

  43. S. Maji, T. Agarwal, J. Das, T.K. Maiti, Development of gelatin/carboxymethyl chitosan/nano-hydroxyapatite composite 3D macroporous scaffold for bone tissue engineering applications. Carbohyd. Polym. 189, 115–125 (2018)

    Article  CAS  Google Scholar 

  44. X. Wang, Y. Li, H. Li, C. Yang, Chitosan membrane adsorber for low concentration copper ion removal. Carbohyd. Polym. 146, 274–281 (2016)

    Article  CAS  Google Scholar 

  45. M.S. Freag, W.M. Saleh, O.Y. Abdallah, Exploiting polymer blending approach for fabrication of buccal chitosan-based composite sponges with augmented mucoadhesive characteristics. Eur. J. Pharm. Sci. 120, 10–19 (2018)

    Article  CAS  PubMed  Google Scholar 

  46. E.S. Dragan, M.M. Lazar, M.V. Dinu, F. Doroftei, Macroporous composite IPN hydrogels based on poly (acrylamide) and chitosan with tuned swelling and sorption of cationic dyes. Chem. Eng. J. 204, 198–209 (2012)

    Article  Google Scholar 

  47. H. Ye, J. Cheng, K. Yu, In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. Int. J. Biol. Macromol. 121, 633–642 (2019)

    Article  CAS  PubMed  Google Scholar 

  48. Y. Wang, J. Qian, N. Zhao, T. Liu, W. Xu, A. Suo, Novel hydroxyethyl chitosan/cellulose scaffolds with bubble-like porous structure for bone tissue engineering. Carbohyd. Polym. 167, 44–51 (2017)

    Article  CAS  Google Scholar 

  49. M.V. Dinu, I.A. Dinu, M.M. Lazar, E.S. Dragan, Dragan, Insights into the mechanism of Cu2+ binding onto chitosan based cryogel composites: equilibrium, kinetics and thermodynamics studies. Cellul. Chem. Technol. 52, 181–192 (2018)

    CAS  Google Scholar 

  50. S. Kar, T. Kaur, A. Thirugnanam, Microwave-assisted synthesis of porous chitosan–modified montmorillonite–hydroxyapatite composite scaffolds. Int. J. Biol. Macromol. 82, 628–636 (2016)

    Article  CAS  PubMed  Google Scholar 

  51. G.K. Bayrak, T.T. Demirtaş, M. Gümüşderelioğlu, Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds. Carbohyd. Polym. 157, 803–813 (2017)

    Article  Google Scholar 

  52. Y. Huang, M. Zeng, Z. Feng, D. Yin, Q. Xu, L. Fan, Graphene oxide-based composite hydrogels with self-assembled macroporous structures. RSC Adv. 6(5), 3561–3570 (2016)

    Article  CAS  Google Scholar 

  53. E.M. Ahmed, Hydrogel: Preparation, characterization, and applications: a review. J. Adv. Res. 6(2), 105–121 (2015)

    Article  CAS  PubMed  Google Scholar 

  54. E.S. Dragan, M.V. Dinu, Interpenetrating polymer network composite cryogels with tailored porous morphology and sorption properties, in Affinity Chromatography. (Humana Press, New York, 2015), pp. 239–252

    Chapter  Google Scholar 

  55. S. Dasgupta, K. Maji, S.K. Nandi, Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: in vitro and in vivo. Mater. Sci. Eng. C 94, 713–728 (2019)

    Article  CAS  Google Scholar 

  56. Y. Liu, S. Huang, X. Zhao, Y. Zhang, Fabrication of three-dimensional porous β-cyclodextrin/chitosan functionalized graphene oxide hydrogel for methylene blue removal from aqueous solution. Colloids Surf. A 539, 1–10 (2018)

    Article  CAS  Google Scholar 

  57. Y. Liu, H. Zheng, M. Liu, High performance strain sensors based on chitosan/carbon black composite sponges. Mater. Des. 141, 276–285 (2018)

    Article  CAS  Google Scholar 

  58. T. Sen, B. Ozcelik, G.G. Qiao, M.M. Ozmen, Hierarchical porous hybrid chitosan scaffolds with tailorable mechanical properties. Mater. Lett. 209, 528–531 (2017)

    Article  CAS  Google Scholar 

  59. T. Sen, B. Ozcelik, M.M. Ozmen, Tough and hierarchical porous cryogel scaffolds preparation using n-butanol as a non-solvent. Int. J. Polym. Mater. Polym. Biomater. 68(7), 411–416 (2019)

    Article  CAS  Google Scholar 

  60. N. Pettinelli, S. Rodríguez-Llamazares, V. Abella, L. Barral, R. Bouza, Y. Farrag, F. Lago, Entrapment of chitosan, pectin or κ-carrageenan within methacrylate based hydrogels: effect on swelling and mechanical properties. Mater. Sci. Eng. C 96, 583–590 (2019)

    Article  CAS  Google Scholar 

  61. L. Racine, I. Texier, R. Auzély-Velty, Chitosan-based hydrogels: recent design concepts to tailor properties and functions. Polym. Int. 66(7), 981–998 (2017)

    Article  CAS  Google Scholar 

  62. C. Peng, J. Xu, G. Chen, J. Tian, M. He, The preparation of α-chitin nanowhiskers-poly (vinyl alcohol) hydrogels for drug release. Int. J. Biol. Macromol. 131, 336–342 (2019)

    Article  CAS  PubMed  Google Scholar 

  63. N. Sood, A. Bhardwaj, S. Mehta, A. Mehta, Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv. 23(3), 748–770 (2016)

    Article  CAS  Google Scholar 

  64. E.S. Dragan, D.F.A. Loghin, Fabrication and characterization of composite cryobeads based on chitosan and starches-g-PAN as efficient and reusable biosorbents for removal of Cu2+, Ni2+, and Co2+ ions. Int. J. Biol. Macromol. 120, 1872–1883 (2018)

    Article  CAS  PubMed  Google Scholar 

  65. P.I. Morgado, S.P. Miguel, I.J. Correia, A. Aguiar-Ricardo, Ibuprofen loaded PVA/chitosan membranes: a highly efficient strategy towards an improved skin wound healing. Carbohyd. Polym. 159, 136–145 (2017)

    Article  CAS  Google Scholar 

  66. L. Fan, H. Yang, J. Yang, M. Peng, J. Hu, Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohyd. Polym. 146, 427–434 (2016)

    Article  CAS  Google Scholar 

  67. F. Wahid, X.H. Hu, L.Q. Chu, S.R. Jia, Y.Y. Xie, C. Zhong, Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. Int. J. Biol. Macromol. 122, 380–387 (2019)

    Article  CAS  PubMed  Google Scholar 

  68. M.F. Albab, N. Giovani, A.H. Yuwono, N. Sofyan, G. Ramahdita, Y. Whulanza, The influence of phosphorylation and freezing temperature on the mechanical properties of hydroxyapatite/chitosan composite as bone scaffold biomaterial, in AIP Conference Proceedings. (AIP Publishing LLC, Melville, 2018)

    Google Scholar 

  69. R.M. Felfel, M.J. Gideon-Adeniyi, K.M.Z. Hossain, G.A. Roberts, D.M. Grant, Structural, mechanical and swelling characteristics of 3D scaffolds from chitosan-agarose blends. Carbohyd. Polym. 204, 59–67 (2019)

    Article  CAS  Google Scholar 

  70. J.S. Weaver, S.R. Kalidindi, U.G. Wegst, Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Mater. 132, 182–192 (2017)

    Article  CAS  Google Scholar 

  71. M.A. Gámiz-González, P. Guldris, C.A. Turpín, J.R. Rochina, A. Vidaurre, J.G. Ribelles, Fast degrading polymer networks based on carboxymethyl chitosan. Mater. Today Commun. 10, 54–66 (2017)

    Article  Google Scholar 

  72. B. Kaczmarek, A. Sionkowska, A.M. Osyczka, Scaffolds based on chitosan and collagen with glycosaminoglycans cross-linked by tannic acid. Polym. Testing 65, 163–168 (2018)

    Article  CAS  Google Scholar 

  73. A.G. Pereira, F.H. Rodrigues, A.T. Paulino, A.F. Martins, A.R. Fajardo, Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: a review. J. Clean. Prod. 284, 124703 (2020)

    Article  Google Scholar 

  74. S. Benkhaya, S. M’rabet, A. El Harfi, Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 6(1), e03271 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  75. M. Ahmad, K. Manzoor, S. Ikram, Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions; a review. Int. J. Biol. Macromol. 105, 190–203 (2017)

    Article  CAS  PubMed  Google Scholar 

  76. J. Desbrières, E. Guibal, Chitosan for wastewater treatment. Polym. Int. 67(1), 7–14 (2018)

    Article  Google Scholar 

  77. P.M. Pakdel, S.J. Peighambardoust, Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohyd. Polym. 201, 264–279 (2018)

    Article  Google Scholar 

  78. E. Guibal, Interactions of metal ions with chitosan-based sorbents: a review. Sep. Purif. Technol. 38(1), 43–74 (2004)

    Article  CAS  Google Scholar 

  79. L. Zhang, Y. Zeng, Z. Cheng, Removal of heavy metal ions using chitosan and modified chitosan: a review. J. Mol. Liq. 214, 175–191 (2016)

    Article  CAS  Google Scholar 

  80. A. Azari, M. Noorisepehr, E. Dehghanifard, K. Karimyan, S.Y. Hashemi, E.M. Kalhori et al., Experimental design, modeling and mechanism of cationic dyes biosorption on to magnetic chitosan–lutaraldehyde composite. Int. J. Biol. Macromol. 131, 633–645 (2019)

    Article  CAS  PubMed  Google Scholar 

  81. E. Tao, D. Ma, S. Yang, X. Hao, Graphene oxide-montmorillonite/sodium alginate aerogel beads for selective adsorption of methylene blue in wastewater. J. Alloy. Compd. 832, 154833 (2020)

    Article  CAS  Google Scholar 

  82. Y. Chen, W. Liang, Y. Li, Y. Wu, Y. Chen, W. Xiao et al., Modification, application and reaction mechanisms of nano-sized iron sulfide particles for pollutant removal from soil and water: a review. Chem. Eng. J. 362, 144–159 (2019)

    Article  CAS  Google Scholar 

  83. R. Jayalakshmi, J. Jeyanthi, Dynamic modelling of Alginate–Cobalt ferrite nanocomposite for removal of binary dyes from textile effluent. J. Environ. Chem. Eng. 9(1), 104924 (2021)

    Article  CAS  Google Scholar 

  84. G.R. Mahdavinia, A. Mosallanezhad, Facile and green rout to prepare magnetic and chitosan-crosslinked κ-carrageenan bionanocomposites for removal of methylene blue. J. Water Process Eng. 10, 143–155 (2016)

    Article  Google Scholar 

  85. S. Yadav, A. Asthana, A.K. Singh, R. Chakraborty, S.S. Vidya, M.A.B.H. Susan, S.A. Carabineiro, Adsorption of cationic dyes, drugs and metal from aqueous solutions using a polymer composite of magnetic/β-cyclodextrin/activated charcoal/Na alginate: Isotherm, kinetics and regeneration studies. J. Hazard. Mater. 409, 124840 (2021)

    Article  CAS  PubMed  Google Scholar 

  86. Y. Chen, W. Long, H. Xu, Efficient removal of Acid Red 18 from aqueous solution by in-situ polymerization of polypyrrole-chitosan composites. J. Mol. Liq. 287, 110888 (2019)

    Article  CAS  Google Scholar 

  87. E. Makhado, S. Pandey, K.D. Modibane, M. Kang, M.J. Hato, Sequestration of methylene blue dye using sodium alginate poly (acrylic acid)@ ZnO hydrogel nanocomposite: kinetic, isotherm, and thermodynamic investigations. Int. J. Biol. Macromol. 162, 60–73 (2020)

    Article  CAS  PubMed  Google Scholar 

  88. M.T. Nakhjiri, G.B. Marandi, M. Kurdtabar, Poly (AA-co-VPA) hydrogel cross-linked with N-maleyl chitosan as dye adsorbent: isotherms, kinetics and thermodynamic investigation. Int. J. Biol. Macromol. 117, 152–166 (2018)

    Article  CAS  PubMed  Google Scholar 

  89. M. Sabzevari, D.E. Cree, L.D. Wilson, Graphene oxide–chitosan composite material for treatment of a model dye effluent. ACS Omega 3(10), 13045–13054 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. D. Cortinez, P. Palma, R. Castro, H. Palza, A multifunctional bi-phasic graphene oxide/chitosan paper for water treatment. Sep. Purif. Technol. 235, 116181 (2020)

    Article  CAS  Google Scholar 

  91. A. Mokhtar et al., Adsorption behavior of cationic and anionic dyes on magadiite-chitosan composite beads. Carbohydr. Polym. 229, 115399 (2020)

    Article  CAS  PubMed  Google Scholar 

  92. I.A. Mohammed, A.H. Jawad, A.S. Abdulhameed, M.S. Mastuli, Physicochemical modification of chitosan with fly ash and tripolyphosphate for removal of reactive red 120 dye: statistical optimization and mechanism study. Int. J. Biol. Macromol. 161, 503–513 (2020)

    Article  CAS  PubMed  Google Scholar 

  93. M.S. de Luna, C. Ascione, C. Santillo, L. Verdolotti, M. Lavorgna, G.G. Buonocore et al., Optimization of dye adsorption capacity and mechanical strength of chitosan aerogels through crosslinking strategy and graphene oxide addition. Carbohyd. Polym. 211, 195–203 (2019)

    Article  Google Scholar 

  94. H. Li, B. Yan, Y. Ma, X. Ma, X. Zhang, B. Zhao, Adsorption of l-α-glycerophosphocholine on ion-exchange resin: equilibrium, kinetic, and thermodynamic studies. Green Process. Synth. 9(1), 275–282 (2020)

    Article  Google Scholar 

  95. Y. Tang, T. He, Y. Liu, B. Zhou, R. Yang, L. Zhu, Sorption behavior of methylene blue and rhodamine B mixed dyes onto chitosan graft poly (acrylic acid-co-2-acrylamide-2-methyl propane sulfonic acid) hydrogel. Adv. Polym. Technol. 37(7), 2568–2578 (2018)

    Article  CAS  Google Scholar 

  96. R. Yu, Y. Shi, D. Yang, Y. Liu, J. Qu, Z.Z. Yu, Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants. ACS Appl. Mater. Interfaces. 9(26), 21809–21819 (2017)

    Article  CAS  PubMed  Google Scholar 

  97. C. Qi, L. Zhao, Y. Lin, D. Wu, Graphene oxide/chitosan sponge as a novel filtering material for the removal of dye from water. J. Colloid Interface Sci. 517, 18–27 (2018)

    Article  CAS  PubMed  Google Scholar 

  98. X. Qi, L. Wu, T. Su, J. Zhang, W. Dong, Polysaccharide-based cationic hydrogels for dye adsorption. Colloids Surf. B 170, 364–372 (2018)

    Article  CAS  Google Scholar 

  99. C. Shi, C. Lv, L. Wu, X. Hou, Porous chitosan/hydroxyapatite composite membrane for dyes static and dynamic removal from aqueous solution. J. Hazard. Mater. 338, 241–249 (2017)

    Article  CAS  PubMed  Google Scholar 

  100. T. Li, Y. Liu, S. Wang, G. Zeng, B. Zheng, H. Wang et al., Synthesis and adsorption application of amine shield-introduced-released porous chitosan hydrogel beads for removal of acid orange 7 from aqueous solutions. RSC Adv. 5(77), 62778–62787 (2015)

    Article  CAS  Google Scholar 

  101. A. Ouyang, C. Wang, S. Wu, E. Shi, W. Zhao, A. Cao, D. Wu, Highly porous core–shell structured graphene-chitosan beads. ACS Appl. Mater. Interfaces. 7(26), 14439–14445 (2015)

    Article  CAS  PubMed  Google Scholar 

  102. Q. Du, J. Sun, Y. Li, X. Yang, X. Wang, Z. Wang, L. Xia, Highly enhanced adsorption of congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles. Chem. Eng. J. 245, 99–106 (2014)

    Article  CAS  Google Scholar 

  103. Y. Jiang, B. Liu, J. Xu, K. Pan, H. Hou, J. Hu, J. Yang, Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: adsorption performance and mechanism. Carbohyd. Polym. 182, 106–114 (2018)

    Article  CAS  Google Scholar 

  104. A.Z. Moghaddam, E. Ghiamati, A. Pourashuri, A. Allahresani, Modified nickel ferrite nanocomposite/functionalized chitosan as a novel adsorbent for the removal of acidic dyes. Int. J. Biol. Macromol. 120, 1714–1725 (2018)

    Article  Google Scholar 

  105. K.C. Lai, B.Y.Z. Hiew, L.Y. Lee, S. Gan, S. Thangalazhy-Gopakumar, W.S. Chiu, P.S. Khiew, Ice-templated graphene oxide/chitosan aerogel as an effective adsorbent for sequestration of metanil yellow dye. Biores. Technol. 274, 134–144 (2019)

    Article  CAS  Google Scholar 

  106. C. Zhang, Y. Dai, Y. Wu, G. Lu, Z. Cao, J. Cheng et al., Facile preparation of polyacrylamide/chitosan/Fe3O4 composite hydrogels for effective removal of methylene blue from aqueous solution. Carbohyd. Polym. 234, 115882 (2020)

    Article  CAS  Google Scholar 

  107. G. Crini, G. Torri, E. Lichtfouse, G.Z. Kyzas, L.D. Wilson, N. Morin-Crini, Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environ. Chem. Lett. 17(4), 1645–1666 (2019)

    Article  CAS  Google Scholar 

  108. V.K. Thakur, S.I. Voicu, Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr. Polym. 146, 148–165 (2016)

    Article  CAS  PubMed  Google Scholar 

  109. M. Auta, B.H. Hameed, Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem. Eng. J. 237, 352–336 (2014)

    Article  CAS  Google Scholar 

  110. M. Akbarzadeh, M.T. Vardini, G.R. Mahdavinia, Preparation of a novel magnetic nanocomposite hydrogel based on carboxymethyl chitosan for the adsorption of Crystal Violet as cationic dye. J. Chem. Health Risks 8, 289–304 (2018)

    CAS  Google Scholar 

  111. W. Ahmad, A. Khan, N. Ali, S. Khan, S. Uddin, S. Malik et al., Photocatalytic degradation of crystal violet dye under sunlight by chitosan-encapsulated ternary metal selenide microspheres. Environ. Sci. Pollut. Res. 28(7), 8074–8087 (2021)

    Article  CAS  Google Scholar 

  112. G.B.P. Antonio, H.A.R. Francisco, T.P. Alexandre, A.F. Martins, A.R. Fajardo, Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: a review. J. Clean. Prod. 284, 124703 (2021)

    Article  Google Scholar 

  113. A. Banaei, M.F. Yaychi, S. Karimi, H. Vojoudi, H. Namazi, A. Badiei, E, Pourbasheer, 2,2’-(butane-1,4-diylbis(oxy))dibenzaldehyde cross-linked magnetic chitosan nanoparticles as a new adsorbent for the removal of reactive red 239 from aqueous solutions. Mater. Chem. Phys. 212, 1–11 (2018)

    Article  CAS  Google Scholar 

  114. M.R. Fat’hi, S.J.H. Nasab, Synthesis of calcon-imprinted magnetic chitosan nanoparticles as a novel adsorbent and its application in selective removal of calcon dye from aqueous solutions. Int. J. Biol. Macromol. 114, 1151–1160 (2018)

    Article  PubMed  Google Scholar 

  115. H. Karimi-Maleh, A. Ayati, R. Davoodi, B. Tanhaei, F. Karimi, S. Malekmohammadi et al., Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: a review. J. Clean. Prod. 291, 125880 (2021)

    Article  CAS  Google Scholar 

  116. A. Khan, N. Ali, S. Malik, M. Bilal, H. Munir, L.F.R. Ferreira, H.M. Iqbal, Chitosan-based green sorbents for toxic cations removal, in Sorbents Materials for Controlling Environmental Pollution. (Elsevier, Amsterdam, 2021), pp. 323–352

    Chapter  Google Scholar 

  117. A. Khan, S. Malik, N. Ali, M. Bilal, M. El-Shazly, H.M. Iqbal, Biopolymer-based sorbents for emerging pollutants, in Sorbents Materials for Controlling Environmental Pollution. (Elsevier, Amsterdam, 2021), pp. 463–491

    Chapter  Google Scholar 

  118. P. Maijan, P. Amornpitoksuk, S. Chantarak, Synthesis and characterization of poly (vinyl alcohol-g-acrylamide)/SiO2@ ZnO photocatalytic hydrogel composite for removal and degradation of methylene blue. Polymer 203, 122771 (2020)

    Article  CAS  Google Scholar 

  119. B. Qu, L. Luo, Chitosan-based hydrogel beads: preparations, modifications and applications in food and agriculture sectors—a review. Int. J. Biol. Macromol. 152, 437–448 (2020)

    Article  CAS  PubMed  Google Scholar 

  120. H. Shi, Z. Dai, X. Sheng, D. Xia, P. Shao, L. Yang, X. Luo, Conducting polymer hydrogels as a sustainable platform for advanced energy, biomedical and environmental applications. Sci. Total Environ. 786, 147430 (2021)

    Article  CAS  PubMed  Google Scholar 

  121. U. Upadhyay, I. Sreedhar, S.A. Singh, C.M. Patel, K.L. Anitha, Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr. Polym. 251, 117000 (2020)

    Article  PubMed  Google Scholar 

  122. T. Vahidhabanu, A.I. Adeogun, B.R. Babu, Biopolymer-grafted, magnetically tuned halloysite nanotubes as efficient and recyclable spongelike adsorbents for anionic azo dye removal. ACS Omega 4, 2425–2436 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. H. Yi, W. Zhan, Y. Zhao, S. Qu, W. Wang, P. Chen, S. Song, A novel core-shell structural montmorillonite nanosheets/stearic acid composite PCM for great promotion of thermal energy storage properties. Solid Energy Mater. Solid Cells 192, 57–64 (2019)

    Article  CAS  Google Scholar 

  124. T. Chen, Y. Yuan, Y. Zhao, F. Rao, S. Song, Preparation of montmorillonite nanosheets through freezing/thawing and ultrasonic exfoliation. Langmuir 35, 2368–2374 (2019)

    Article  CAS  PubMed  Google Scholar 

  125. L. Stevens, K. Williams, W. Han, T. Drage, C. Snape, J. Wood, J. Wang, Preparation and CO2 adsorption of diamine modified montmorillonite via exfoliation grafting route. Chem. Eng. J. 215–216, 699–708 (2013)

    Article  Google Scholar 

  126. J. Lü, Y. Ke, Z. Qi, X.S. Yi, Study on intercalation and exfoliation behavior of organoclays in epoxy resin. J. Polym. Sci. B Polym. Phys. 39, 115–120 (2001)

    Article  Google Scholar 

  127. W. Wang, J. Ni, L. Chen, Z. Ai, Y. Zhao, S. Song, Synthesis of carboxymethyl cellulose-chitosan-montmorillonite nanosheets composite hydrogel for dye effluent remediation. Int. J. Biol. Macromol. 165, 1–10 (2020)

    Article  CAS  PubMed  Google Scholar 

  128. M. Jamali, A. Akbari, Facile fabrication of magnetic chitosan hydrogel beads and modified by interfacial polymerization method and study of adsorption of cationic/anionic dyes from aqueous solution. J. Environ. Chem. Eng. 9(3), 105175 (2021)

    Article  CAS  Google Scholar 

  129. J. Pérez-Calderón, M.V. Santos, N. Zaritzky, Reactive RED 195 dye removal using chitosan coacervated particles as bio-sorbent: analysis of kinetics, equilibrium and adsorption mechanisms. J. Environ. Chem. Eng. 6(5), 6749–6760 (2018)

    Article  Google Scholar 

  130. J. Pérez-Calderón, M.V. Santos, N. Zaritzky, Synthesis, characterization and application of cross-linked chitosan/oxalic acid hydrogels to improve azo dye (Reactive Red 195) adsorption. React. Funct. Polym. 155, 104699 (2020)

    Article  Google Scholar 

  131. H. Umma, T. Joo, S.K.A. Shezan, D. Rasel, B. Ang, A.M. Afifi, Synthesis and characterization of chitosan/tiO2 nanocomposite for the adsorption of Congo red. Desalin. Water Treat. 164, 361–367 (2019)

    Article  Google Scholar 

  132. T. Jóźwiak, U. Filipkowska, P. Szymczyk, J. Rodziewicz, A. Mielcarek, Effect of ionic and covalent crosslinking agents on properties of chitosan beads and sorption effectiveness of Reactive Black 5 dye. React. Funct. Polym. 114, 58–74 (2017)

    Article  Google Scholar 

  133. I. Gholamali, M. Asnaashariisfahani, E. Alipour, Silver nanoparticles incorporated in pH-sensitive nanocomposite hydrogels based on carboxymethyl chitosan-poly (vinyl alcohol) for use in a drug delivery system. Regen. Eng. Transl. Med. 6(2), 138–153 (2020)

    Article  CAS  Google Scholar 

  134. J. Krstić, J. Spasojević, A. Radosavljević, M. Šiljegovć, Z. Kačarević-Popović, Optical and structural properties of radiolytically in situ synthesized silver nanoparticles stabilized by chitosan/poly (vinyl alcohol) blends. Radiat. Phys. Chem. 96, 158–166 (2014)

    Article  Google Scholar 

  135. R. Kaur, D. Goyal, S. Agnihotri, Chitosan/PVA silver nanocomposite for butachlor removal: fabrication, characterization, adsorption mechanism and isotherms. Carbohyd. Polym. 262, 117906 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Synthesis of nano-magnetic materials and their application in environmental protection, Project Number 202111049352, Key Laboratory for Special Resource Development and Medicinal Research in Jiangsu Province, Project Number LPRK202101, and 202111049338. Consejo Nacional de Ciencia y Tecnología (CONACyT) Mexico is thankfully acknowledged for partially supporting this work under Sistema Nacional de Investigators (SNI) program awarded to Hafiz M. N. Iqbal (CVU: 735340).

Funding

The authors are thankful for the support from Key Laboratory for Special Resource Development and Medicinal Research in Jiangsu Province, Project Number LPRK202101, 202111049338 and 202111049352.

Author information

Authors and Affiliations

Authors

Contributions

NA, MB, and HMNI conceptualized and set the review theme. NA, ORF, AK, FA, and YY performed initial literature evaluation and screened the data as per theme of the review. NA, AK, FA, CZ, and YW compiled the literature draft and Figures. NA, MSA, MB, and HMNI reviewed and edited the final manuscript and communicated the submission. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nisar Ali, Muhammad Bilal or Hafiz M. N. Iqbal.

Ethics declarations

Conflict of interest

The author(s) declare no conflicting interest.

Consent for Publication

Not applicable.

Consent to Publish

All authors read and approved the final manuscript and happy to give their consent to publish this work subject to peer-review.

Research Involving Human Participants and/or Animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N., Funmilayo, O.R., Khan, A. et al. Nanoarchitectonics: Porous Hydrogel as Bio-sorbent for Effective Remediation of Hazardous Contaminants. J Inorg Organomet Polym 32, 3301–3320 (2022). https://doi.org/10.1007/s10904-022-02388-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02388-9

Keywords

Navigation