Skip to main content

Advertisement

Log in

Antibacterial Activity and Drug Release of Ciprofloxacin Loaded PVA-nHAp Nanocomposite Coating on Ti-6Al-4 V

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Here, a new composite coating was introduced for the Ti-6Al-4 V implant, and the different properties were investigated in-vitro. For this purpose, the Hydroxyapatite nanopowder (nHAp) was synthesized, and the x-ray diffraction (XRD) pattern and field emission scanning electron microscopy (FE-SEM), energy-dispersive x-ray spectroscopy (EDX) evaluations confirmed the nHAp formation. Then Ti-6Al-4 V substrates were sandblasted, and the average surface roughness (Ra) was increased from 23.75 to 31.59 nm after sandblasting operation. Then, nHAp coating was applied on the surface by electrophoretic deposition. Ciprofloxacin (CIP), a common antibacterial drug, was loaded on some nHAp coating Ti substrates. In order to form a crack-free coating and improve biocompatibility, hydrophilicity, and controlled drug release, polyvinyl alcohol (PVA) coating was created on Ti substrates coated with CIP-nHAp. Different properties of non-coated Ti-6Al-4 V, nHAp coated Ti-6Al-4 V, and PVA-CIP coated Ti-6Al-4 V were examined. Fourier-transform infrared and XRD tests proved the presence of CIP on the substrates, and FESEM and EDX tests demonstrated the formation of a crack-free, approximately homogenous coating on all substrates. The drug release evaluation showed sustained CIP releasing with a diffusion mechanism. The antibacterial on both S. aureus and E. coli was higher for CIP-containing substrates than in other samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Hafeez, S. Liu, E. Lu, L. Wang, R. Liu, W. Lu, L.-C. Zhang, Mechanical behavior and phase transformation of β-type Ti-35Nb-2Ta-3Zr alloy fabricated by 3D-Printing. J. Alloys Compd. 790, 117–126 (2019). https://doi.org/10.1016/j.jallcom.2019.03.138

    Article  CAS  Google Scholar 

  2. M. Kulkarni, A. Mazare, E. Gongadze, Š Perutkova, V. Kralj-Iglič, I. Milošev, P. Schmuki, A. Iglič, M. Mozetič, Titanium nanostructures for biomedical applications. Nanotechnology. 26, 62002 (2015). https://doi.org/10.1088/0957-4484/26/6/062002

    Article  CAS  Google Scholar 

  3. S. Durdu, M. Usta, A.S. Berkem, Bioactive coatings on Ti6Al4V alloy formed by plasma electrolytic oxidation. Surf Coat. Technol 301, 85–93 (2016). https://doi.org/10.1016/j.surfcoat.2015.07.053

    Article  CAS  Google Scholar 

  4. S. Poddar, A. Bit, S.K. Sinha, A study on influence of anodization on the morphology of titania nanotubes over Ti6Al4V alloy in correlation to hard tissue engineering application. Mater. Chem. Phys. 254, 123457 (2020). https://doi.org/10.1016/j.matchemphys.2020.123457

    Article  CAS  Google Scholar 

  5. N. Lin, D. Li, J. Zou, R. Xie, Z. Wang, B. Tang, Surface Texture-Based Surface Treatments on Ti6Al4V Titanium Alloys for Tribological and Biological Applications: A Mini Review, Materials (Basel). 11 (2018) 487. https://doi.org/10.3390/ma11040487

  6. J.C.M. Souza, M.B. Sordi, M. Kanazawa, S. Ravindran, B. Henriques, F.S. Silva, C. Aparicio, L.F. Cooper, Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 94, 112–131 (2019). https://doi.org/10.1016/j.actbio.2019.05.045

    Article  CAS  PubMed  Google Scholar 

  7. A. Kim, N. Abdelhay, L. Levin, J.D. Walters, M.P. Gibson, Antibiotic prophylaxis for implant placement: a systematic review of effects on reduction of implant failure. Br. Dent. J. 228, 943–951 (2020). https://doi.org/10.1038/s41415-020-1649-9

    Article  PubMed  Google Scholar 

  8. O. Camps-Font, R. Figueiredo, E. Valmaseda-Castellón, C. Gay-Escoda, Postoperative Infections After Dental Implant Placement, Implant Dent. 24 (2015) 713–719. https://doi.org/10.1097/ID.0000000000000325

  9. M. Ganjali, A. Yazdanpanah, M. Mozafari, Laser deposition of nano coatings on biomedical implants, in Emerging Applications of Nanoparticles and Architectural Nanostructures, ed. by A.S. Hamdy Makhlouf, A. Barhoum (Elsevier, Netherlands, 2018), pp. 235–254

    Chapter  Google Scholar 

  10. D. Patil, M.K. Wasson, S. Aravindan, P. Vivekanandan, P.V. Rao, Antibacterial and cytocompatibility study of modified Ti6Al4V surfaces through thermal annealing. Mater. Sci. Eng. C 99, 1007–1020 (2019). https://doi.org/10.1016/j.msec.2019.02.058

    Article  CAS  Google Scholar 

  11. L. ZHENG, S. QIAN, X. LIU, Induced antibacterial capability of TiO2 coatings in visible light via nitrogen ion implantation. Trans. Nonferrous Met. Soc. China 30, 171–180 (2020). https://doi.org/10.1016/S1003-6326(19)65189-7

    Article  CAS  Google Scholar 

  12. aA.I. Nicolas-Silvente, E. Velasco-Ortega, I. Ortiz-Garcia, L. Monsalve-Guil, J. Gil, A. Jimenez-Guerra, Influence of the Titanium Implant Surface Treatment on the Surface Roughness and Chemical Composition. Mater. (Basel) 13, 314 (2020). https://doi.org/10.3390/ma13020314

    Article  CAS  Google Scholar 

  13. T. Varadavenkatesan, R. Vinayagam, Sh Pai, K. Brindhadevi, A. Pugazhendhi, R. Selvaraj, Synthesis, biological and environmental applications of hydroxyapatite and its composites with organic and inorganic coatings. Prog. Org. Coat. 151, 106056 (2021). https://doi.org/10.1016/j.porgcoat.2020.106056

    Article  CAS  Google Scholar 

  14. M.Srinivas Shraddha Pai, R. Kini, Selvaraj, A review on adsorptive removal of dyes from wastewater by hydroxyapatite nanocomposites. Environ. Sci. Pollut. Res. 28, 11835–11849 (2021)

    Article  Google Scholar 

  15. Z. Noor, Nanohydroxyapatite Application to Osteoporosis Management, J Osteoporos. 2013 (2013) 679025, doi: https://doi.org/10.1155/2013/679025

  16. M. Catauro, F. Bollino, R. Giovanardi, P. Veronesi, Modification of Ti6Al4V implant surfaces by biocompatible TiO 2 /PCL hybrid layers prepared via sol-gel dip coating: Structural characterization, mechanical and corrosion behavior. Mater. Sci. Eng. C 74, 501–507 (2017)

    Article  CAS  Google Scholar 

  17. R.B. Heimann, Plasma-SprayedHydroxylapatite-Based Coatings, Chemical, Mechanical, Microstructural, and Biomedical Properties. J. Therm. Spray. Technol. 20, 898–908 (2011)

    Article  Google Scholar 

  18. N. Eliaz, T.M. Sridhar, U. Kamachi Mudali and Baldev Raj, Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic applications, Surface Engineering, 2005 21 (2005) 238–242, DOI https://doi.org/10.1179/174329405X50091

  19. D.Y. Lin, Y.T. Zhao, Preparation of novel hydroxyapatite/yttria-stabilized-zirconia gradient coatings by magnetron sputtering. Adv. Eng. Mater. 13, B18–B24 (2011)

    Article  Google Scholar 

  20. R. Drevet,. N. Ben Jaber, J. Fauré, A. Tara, A.B.C. Larbi, H. Benhayoune, Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates. Surf. Coat. Technol. 301, 94–99 (2016)

    Article  CAS  Google Scholar 

  21. S. Bharati, M. Sinha, D. Basu, Hydroxyapatite Coating by Biomimetic Method on Titanium Alloy using Concentrated SBF. Bull. Mater. Sci. 28, 617–621 (2005). DOI:https://doi.org/10.1007/BF02706352

    Article  CAS  Google Scholar 

  22. M. Ganjali, S. Pourhashem, M.R. Vaezi, Characterization and Corrosion Behavior of Hydroxyapatite- Coated Titanium Substrates Prepared Through Laser Induced Liquid Deposition Technique, Journal of Advanced Ceramics Progress (ACERP), 1 (2015) 28–33

  23. G. Mendonça, D.B.S. Mendonça, L.G.P. Simões, A.L. Araújo, E.R. Leite, W.R. Duarte,, F J.L. Aragão, L.F. Cooper, The effects of implant surface nanoscale features on osteoblast-specific gene expression, Biomaterials, 30 (2009) 4053–4062

    Article  Google Scholar 

  24. C. Pan, Z. Zhou, X. Yu, Coatings as the useful drug delivery system for the prevention of implant-related infections. J. Orthop. Surg. Res. 13, 220 (2018). https://doi.org/10.1186/s13018-018-0930-y

    Article  PubMed  PubMed Central  Google Scholar 

  25. U. Brohede, J. Forsgren,. A. Roos, H. Mihranyan, M. Engqvist, Strømme, Multifunctional implant coatings providing possibilities for fast antibiotics loading with subsequent slow releasem. J. Mater. Sci. Mater. Med. 20, 1859–1867 (2009). doi:https://doi.org/10.1007/s10856-009-3749-6

    Article  CAS  PubMed  Google Scholar 

  26. O. Forsgren, U. Brohede, M. Strømme, H. Engqvist, Co-loading of bisphosphonates and antibiotics to a biomimetic hydroxyapatite coating, Springer Verlag, 33 (Biotechnology Letters, 2011), pp. 1265–1268, doi:https://doi.org/10.1007/s10529-011-0542-7

  27. D.P. Lew, F.A. Waldvogel, L. Osteomyelitis. 364 (2004) 369–379. https://doi.org/10.1016/S0140-6736(04)16727-5

  28. N. Eliaz, N. Metoki, C.P. Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications, Materials (Basel). 10 (2017) 334. https://doi.org/10.3390/ma10040334

  29. A. Fàbrega, S. Madurga, E. Giralt, J. Vila, Mechanism of action of and resistance to quinolones. Microb. Biotechnol. 2, 40–61 (2009). doi:https://doi.org/10.1111/j.1751-7915.2008.00063.x

    Article  CAS  PubMed  Google Scholar 

  30. T.R. Flynn, “Evidence-based principles of antibiotic therapy,” Evidence-Based Oral Surgery, Springer, Berlin, Germany, 2019

  31. B.G. Anand, R. Mala, Prevalence of oral pathogens in oral cavities, dental implants, fixed bridges among the people in South India. Eur. J. Biotechnol. Bioscience 2, 35–41 (2014) “,”

    Google Scholar 

  32. G.-F. Zhang, X. Liu, S. Zhang, B. Pan, M.-L. Liu, Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem. 146, 599–612 (2018) “,”

    Article  CAS  Google Scholar 

  33. B. Buranapanitkit, V. Srinilta, N. Ingviga, K. Oungbho, A. Geater, C. Ovatlarnporn, The efficacy of a hydroxyapatite composite as a biodegradable antibiotic delivery system. Clin. Orthop. Relat. Res. 424, 244–252 (2004). doi:https://doi.org/10.1097/01.blo.0000130268.27024.c1

    Article  Google Scholar 

  34. M. Stigter, J. Bezemer, K. de Groot, P. Layrolle, Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J. Controlled Release 99, 127–137 (2004)

    Article  CAS  Google Scholar 

  35. D. Predoi, C.L. Popa, P. Chapon, A. Groza, S.L. Iconaru, Evaluation of the Antimicrobial Activity of Different Antibiotics Enhanced with Silver-Doped Hydroxyapatite Thin Films. Materials. 9, 778 (2016). doi:https://doi.org/10.3390/ma9090778

    Article  CAS  PubMed Central  Google Scholar 

  36. I.J. Macha, B. Ben-Nissan, J. Santos, S. Cazalbou, B. Milthorpe, Hydroxyapatite/PLA biocomposite thin films for slow drug delivery of antibiotics for the treatment of bone and implant-related infections. Key Eng. Mater. 696, 271–276 (2016). doi:https://doi.org/10.4028/www.scientific.net/KEM.696.271

    Article  Google Scholar 

  37. C.S. Ciobanu, E. Andronescu, D. Predoi, BET and XRD studies on the hydroxyapatite and Europium dopedhydroxyapatite. J. Optoelectron. Adv. Mater. 13, 821–824 (2011)

    CAS  Google Scholar 

  38. T.N. Kim, Q.L. Feng, J.O. Kim, J. Wu, H. Wang, G.C. Chen, F.Z. Cui, Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J. Mater. Sci. Mater. Med. 9, 129–134 (1998)

    Article  Google Scholar 

  39. Y.X. Zeng, X.B. Pei, S.Y. Yang, H. Qin, H. Cai, S. Hu, L. Sui, Q. Wan, J. Wang, Graphene oxide/hydroxyapatite composite coatings fabricated by electrochemical deposition. Surf. Coat. Technol. 286, 72–79 (2016)

    Article  CAS  Google Scholar 

  40. R.C. Li, D.E. Nix, J.J. Schentag, Interaction between ciprofloxacin and metal cations: Its influence on physicochemical characteristics and antibacterial activity. Pharm. Res. 11, 917–920 (1994). https://doi.org/10.1023/A:1018954530250

    Article  CAS  PubMed  Google Scholar 

  41. National Committee for Clinical Laboratory Standards, Methods for Dilution Antibacterial Susceptibility Tests for Bacteria that Grow Aerobically – Fifth Edition: Approved Standard M7-A5 (NCCLS, Wayne PA, 2000)

    Google Scholar 

  42. Ł Grabowski, L. Gaffke, K. Pierzynowska, Z. Cyske, M. Choszcz, G. Wegrzyn, A. Wegrzyn, Enrofloxacin—The Ruthless Killerof Eukaryotic Cells or the Last Hopein the Fight against Bacterial Infections? Int. J. Mol. Sci. 23, 3648 (2022). https://doi.org/10.3390/ijms23073648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. G. Cierny, J.T. Mader, J.J. Penninck, The Classic: A Clinical Staging System for Adult Osteomyelitis. Clin. Orthop. Relat. Res. 414, 7–24 (2003). https://doi.org/10.1097/01.blo.0000088564.81746.62

    Article  Google Scholar 

  44. C.-C. Yang, C.-C. Lin, J.-W. Liao, S.-K. Yen, Vancomycin–chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater. Sci. Eng. C 33, 2203–2212 (2013). https://doi.org/10.1016/j.msec.2013.01.038

    Article  CAS  Google Scholar 

  45. J. Zhang, C. Wang, J. Wang, Y. Qu, G. Liu, In vivo drug release and antibacterial properties of vancomycin loaded hydroxyapatite/chitosan composite. Drug Deliv 19, 264–269 (2012). https://doi.org/10.3109/10717544.2012.704093

    Article  CAS  PubMed  Google Scholar 

  46. N. D., R. N., Vancomycin incorporated chitosan/gelatin coatings coupled with TiO2–SrHAP surface modified cp-titanium for osteomyelitis treatment, Int. J. Biol. Macromol. 110 (2018) 197–205. https://doi.org/10.1016/j.ijbiomac.2018.01.004

  47. F. Pishbin, V. Mouriño, S. Flor, S. Kreppel, V. Salih, M.P. Ryan, A.R. Boccaccini, Electrophoretic Deposition of Gentamicin-Loaded Bioactive Glass/Chitosan Composite Coatings for Orthopaedic Implants. ACS Appl. Mater. Interfaces 6, 8796–8806 (2014). https://doi.org/10.1021/am5014166

    Article  CAS  PubMed  Google Scholar 

  48. M. Taha, F. Chai, N. Blanchemain, C. Neut, M. Goube, M. Maton, M, Evaluation of sorption capacity of antibiotics and antibacterial properties of a cyclodextrin-polymer functionalized hydroxyapatite-coated titanium hip prosthesis. Int. J. Pharm. 477, 380–389 (2014)

    Article  CAS  Google Scholar 

  49. D. Mandler, O. Geuli, N. Metoki, N. Eliaz, M. Reches, T. Zada, Synthesis, coating and drug-release of hydroxyapatite nanoparticles loaded with antibiotics. J. Mater. Chem. B (2017). DOI:https://doi.org/10.1039/C7TB02105D

    Article  PubMed  Google Scholar 

  50. G.S. Kumar, R. Govindan, E.K. Girija, In situ synthesis, characterization and in vitro studies of ciprofloxacin loaded hydroxyapatite nanoparticles for the treatment of osteomyelitis. J. Mater. Chem. B 2, 5052–5060 (2014). https://doi.org/10.1039/C4TB00339J

    Article  CAS  PubMed  Google Scholar 

  51. A. Kumar, J. Fernandes, P. Kumar, Synthesis, Antimicrobial and Antitubercular Activities of Some Novel Carboxamide Derivatives of 2-Quinolones. Orient. J. Chem. 30, 1993–1997 (2014). https://doi.org/10.13005/ojc/300462

    Article  CAS  Google Scholar 

  52. T.M. Freyman, I.V. Yannas, R. Yokoo, L.J. Gibson, Fibroblast contraction of a collagen–GAG matrix. Biomaterials. 22, 2883–2891 (2001)

    Article  CAS  Google Scholar 

  53. W.J.C.M. Marijnissen, G.J.V.M. van Osch, J. Aigner, S.W. van der Veen, A.P. Hollander, H.L. Verwoerd-Verhoef, J.AN. Verhaar Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials. 23, 1511–1517 (2002)

    Article  CAS  Google Scholar 

  54. H. Park, B. Choi, J. Hu, M.,Lee Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater. 9, 4779–4786 (2013)

    Article  CAS  Google Scholar 

  55. J. Kundu, F. Pati, Y.H. Jeong, D.W. Cho, Chap. 2 - Biomaterials for Biofabrication of 3D Tissue Scaffolds, in book: Biofabrication: Micro- and Nano-fabrication, Printing, Patterning and Assemblies, ed. by G. Forgacs and W. Sun, (Elsevier, USA, 2013), p. 23, Elsevier, https://doi.org/10.1016/B978-1-4557-2852-7.00002-0

  56. N. Trung, N.P. Thi, T.H. Nguyen, M.N. Nguyen, D.T. Anh, T.N. Trung, T.T. Quang, H.T. Van, T.T. Thi, Tuning the thermal and mechanical properties of poly(vinyl alcohol) with 2,5-furandicarboxylic acid acting as a biobased crosslinking agent. Polym. J. volume 54, 335–343 (2022)

    Article  Google Scholar 

  57. C.H. Lee, A. Singla, Y. Lee, Biomedical applications of collagen. Int. J. Pharm. 22, 1–22 (2001)

    Article  Google Scholar 

  58. C.E. Schmidt, JM. Baier Acellular vascular tissues: natural bioma-terials for tissue repair and tissue engineering. Biomaterials. 21, 2215–2231 (2000)

    Article  CAS  Google Scholar 

  59. B. Seal, T.C. Otero, A. Panitch, Polymeric biomaterials for tissue and organ regeneration. Mater. Sci. Eng. Rep. 34, 147–230 (2001)

    Article  Google Scholar 

  60. E. Fournier, C. Passirani, C.N. Montero-Menei, J.P. Benoit, Biocompat-ibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials. 24, 3311–3331 (2003)

    Article  CAS  Google Scholar 

  61. N. Iqbal, R. Nazir, A. Asif, A.A. Chaudhry, M. Akram, G.Y. Fan, A. Akram, R. Amin, S.H. Park, R. Hussain, Electrophoretic deposition of PVA coated hydroxyapatite on 316L stainless steel. Curr. Appl. Phys. 12, 755–759 (2012). https://doi.org/10.1016/j.cap.2011.11.003

    Article  Google Scholar 

  62. C.L. Morea, D. Villain, A. DKu, D.N., Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite. Biomatter. 4, e28764 (2014). https://doi.org/10.4161/biom.28764

    Article  Google Scholar 

  63. J.I.D. Agudelo, M.R. Ramirez, E.R. Henquin, I. Rintoul, Modelling of swelling of PVA hydrogels considering non-ideal mixing behaviour of PVA and water. J. Mater. Chem. B 7, 4049–4054 (2019)

    Article  Google Scholar 

  64. S.J. Ma, S.W. Wang, Q. Li, Y.T. Leng, L.H. Wang, G.H. Hu, A novel method for preparing poly(vinyl alcohol) hydrogels: preparation, characterization, and application. Ind. Eng. Chem. Res. 56, 7971–7976 (2017)

    Article  CAS  Google Scholar 

  65. S.K. Mishra, S. Kannan, Development, mechanical evaluation and surface characteristics of chitosan/polyvinyl alcohol based polymer composite coatings on titanium metal. J. Mech. Behav. Biomed. Mater. 40, 314–324 (2014). https://doi.org/10.1016/j.jmbbm.2014.08.014

    Article  CAS  PubMed  Google Scholar 

  66. Y. Ma, Y. Zheng, X. Huang, T. Xi, X. Lin, D. Han, W. Song, Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid. Biomed. Mater. 5, 25003 (2010). https://doi.org/10.1088/1748-6041/5/2/025003

    Article  CAS  PubMed  Google Scholar 

  67. S. Mohammadi Asl, M. Ganjali, M. Karimi, Surface modification of 316L stainless steel by laser-treated HA-PLA nanocomposite films toward enhanced biocompatibility and corrosion-resistance in vitro, Surf Coat. Technol 363 (2019). https://doi.org/10.1016/j.surfcoat.2019.02.052

  68. M.P. Badar, M.RahimM.I. Kieke, M. Ebel, T. Rohde, M. Hauser, H. Behrens, P., Controlled drug release from antibiotic-loaded layered double hydroxide coatings on porous titanium implants in a mouse model. J. Biomed. Mater. Res. A 103, 2141–2149 (2015). https://doi.org/10.1002/jbm.a.35358

    Article  CAS  PubMed  Google Scholar 

  69. S. Tang, B. Tian, Q.-F. Ke, Z.-A. Zhu, Y.-P. Guoa, Gentamicin-loaded carbonated hydroxyapatite coatings with hierarchically porous structures: drug delivery properties, bactericidal properties and biocompatibility. RSC Adv. (2014). https://doi.org/10.1039/C4RA05493H

    Article  PubMed  Google Scholar 

  70. E. Peón Avés, S. Sader and F. de and A. Rodrigues Jerônimo and L. Ágata de and J. C. GalvánSierra and G. Almeida Soares, Comparative Study of Hydroxyapatite Coatings Obtained by Sol-Gel andElectrophoresis on Titanium Sheets, Revista Matéria, 12 (2007) 156–163, 2007

  71. A.L. Patterson, The Scherrer Formula for I-Ray Particle Size Determination, Phys. Rev. 56 (1939) 978–982, 1939

  72. P.S.- Gott, Bestimmung dergrosse und der inneren struktur yon kolloiteilchen mittels. Nachr. Math. Phys. 2, 98–100 (1918)

    Google Scholar 

  73. S.A. Kumar, Y.-A. Peter, J.L. Nadeau, Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology. 19, 495101 (2008). https://doi.org/10.1088/0957-4484/19/49/495101

    Article  CAS  PubMed  Google Scholar 

  74. T.J. Webster, Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. Int. J. Nanomedicine 7, 229 (2008). https://doi.org/10.2147/IJN.S2448

    Article  Google Scholar 

  75. M. Kawata, H. Uchida, K. Itatani, I. Okada, S. Koda, M. Aizawa, Development of porous ceramics with well-controlled porosities and porosizes from apatite bersand their evaluations. J. Mater. Sci. : Mater. Med. 15, 817–823 (2004)

    CAS  Google Scholar 

  76. O. Feray Bakan, H. Laçin, Sara, A novel low temperature sol–gel synthesis process for thermally stable nanocrystalline hydroxyapatite. Powder Technol. 233, 295–302 (2013)

    Article  Google Scholar 

  77. H.K. Varma, S. Suresh, Babu, Synthesis of calcium phosphate bioceramics by citrate gel pyrolysis method. Ceram. Int. 31, 109–114 (2005)

    Article  CAS  Google Scholar 

  78. M. Corno, C. Busco, B. Civalleri, P. Ugliengo, Periodic ab initio study of structural and vibrational features of hexagonal hydroxyapatite Ca10(PO4)6(OH)2, Phys. Chem. Chem. Phys. 8, 2464 (2006). https://doi.org/10.1039/b602419j

    Article  CAS  Google Scholar 

  79. S. Sahoo, C.K. Chakraborti, S.C. Mishra, U.N. Nanda, S. Naik, FTIR and XRD investigations of some fluoroquinolones. Int. J. Pharm. Pharm. Sci. 3, 165–170 (2011)

    CAS  Google Scholar 

  80. V. Erfani-Moghadam, M. Aghaei, A. Soltani, N. Abdolahi, A. Ravaghi, M. Cordani, S. Shirvani, S.M. Rad, H. Balakheyli, ST8 micellar/niosomal vesicular nanoformulation for delivery of naproxen in cancer cells: Physicochemical characterization and cytotoxicity evaluation. J. Mol. Struct. 1211, 127867 (2020). https://doi.org/10.1016/j.molstruc.2020.127867

    Article  CAS  Google Scholar 

  81. O. Geuli, N. Metoki, T. Zada, M. Reches, N. Eliaz, D. Mandler, Synthesis, coating, and drug-release of hydroxyapatite nanoparticles loaded with antibiotics. J. Mater. Chem. B 5, 7819–7830 (2017). https://doi.org/10.1039/C7TB02105D

    Article  CAS  PubMed  Google Scholar 

  82. J. Lee, C.H. Jeong, M.H. Lee, E.-G. Jeong, Y.J. Kim, S.Il Kim, Y.R. Kim, Emphysematous Osteomyelitis due to Escherichia coli. Infect. Chemother. 49, 151 (2017). https://doi.org/10.3947/ic.2017.49.2.151

    Article  PubMed  PubMed Central  Google Scholar 

  83. J. Josse, F. Velard, S.C. Gangloff, Staphylococcus aureus vs. Osteoblast: Relationship and Consequences in Osteomyelitis, Front. Cell. Infect. Microbiol. 26, 85 (2015). https://doi.org/10.3389/fcimb.2015.00085

    Article  CAS  Google Scholar 

  84. X. Ge, Y. Leng, C. Bao, S.L. Xu, R. Wang, F. Ren, Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants. J. Biomed. Mater. Res. Part. A 95A, 588–599 (2010). https://doi.org/10.1002/jbm.a.32862

    Article  CAS  Google Scholar 

  85. Y. Su, I. Cockerill, Y. Zheng, L. Tang, Y.-X. Qin, D. Zhu, Biofunctionalization of metallic implants by calcium phosphate coatings. Bioact Mater. 4, 196–206 (2019). https://doi.org/10.1016/j.bioactmat.2019.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  86. S.Q. Ali, A. Zehra, B.S. Naqvi, S. Shah, R. Bushra, Resistance Pattern of Ciprofloxacin Against Different Pathogens, Oman Med. J. 25, 294–298 (2010). https://doi.org/10.5001/omj.2010.85

    Article  Google Scholar 

  87. X.-J. Ji, L. Gao, J.-C. Liu, R.-Z. Jiang, F.-Y. Sun, L.-Y. Cui, S.-Q. Li, K.-Q. Zhi, R.-C. Zeng, Z.-L. Wang, Corrosion resistance and antibacterial activity of hydroxyapatite coating induced by ciproflaxacin-loaded polymeric multilayers on mangnesium alloy, Progress in organic coatings, V. 135, 2019, 465–474, https://doi.org/10.1016/j.porgcoat.2019.06.048

Download references

Acknowledgements

This research was supported by the Materials and Energy Research Center under grant No. 771397055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monireh Ganjali.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajinaebi, M., Ganjali, M. & Nasab, N.A. Antibacterial Activity and Drug Release of Ciprofloxacin Loaded PVA-nHAp Nanocomposite Coating on Ti-6Al-4 V. J Inorg Organomet Polym 32, 3521–3532 (2022). https://doi.org/10.1007/s10904-022-02361-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02361-6

Keywords

Navigation