Skip to main content
Log in

CuO and MWCNTs Nanoparticles Filled PVA–PVP Nanocomposites: Morphological, Optical, Thermal, Dielectric, and Electrical Characteristics

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Copper dioxide (CuO) nanoparticles and Multiwall carbon nanotubes (MWCNTs) filled poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) blend matrix (50/50 wt%) based polymer nanocomposites (PNCs) (i.e., PVA/PVP:(15-x)CuO(x)MWCNTs for x = 0,1,5,7.5, 10,14, and 15wt%) have been prepared employing the solution-cast method. The morphologies of these PNCs are semicrystalline, according to an X-ray diffraction investigation. The FTIR, SEM, and AFM measurements of PNCs were used to investigate the development of the miscible mix, polymer-polymer and polymer–nanoparticle interactions, and the influence of CuO and MWCNTs nanofillers on the morphology aspects on the main chain of PVA/PVP blend. The nanofiller dispersion signposting for x = 14 wt% nanoloading in the PVA–PVP blend matrix significantly enhances the crystalline phase, diminishing the optical energy gap to 2.31 eV. The DC conductivity values augment with the upsurge in nanofiller level for maximum x = 14 wt%. The dielectric and electrical characteristics of these PNCs are investigated for an applied frequency range from 1 kHz to 1 MHz. The enhancement in the nanofiller level upto x = 14 wt% in the PVA/PVP matrix leads to the development of percolating network through the PNCs. These factors boost the dielectric permittivity values substantially, owing to the decrease in the nano-confinement phenomenon. The rise in applied frequency reduces dielectric permittivity and impedance values and enhances ac electrical conductivity. These PNCs having good dielectric and electrical characteristics can be used as frequency tunable nanodielectric material in electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.M. Demir, M. Memesa, P. Castignolles, G. Wegner, PMMA/zinc oxide nanocomposites prepared by in-situ bulk polymerization. Macromol. Rapid Commun. 27(10), 763–770 (2006)

    Article  CAS  Google Scholar 

  2. E.M. Abdelrazek, I.S. Elashmawi, A. El-Khodary, A. Yassin, Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr. Appl. Phys. 10, 607–613 (2010)

    Article  Google Scholar 

  3. M. Todd Alam, J.U. Otaigbe, D. Rhoades, G.P. Holland, B.R. Cherry, P.G. Kotula, Nanostructured polymer blends: synthesis and structure. Polymer 46(26), 12468–12479 (2005)

    Article  Google Scholar 

  4. R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, Conductivity and thermal studies of blend polymer electrolytes based on PVAc–PMMA. Solid State Ionics 177, 2679–2682 (2006)

    Article  CAS  Google Scholar 

  5. K.K. Kumar, M. Ravi, Y. Pavani, S. Bhavani, A.K. Sharma, V.V.R. Narasimha Rao, Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J. Membr. Sci. 454, 200–211 (2014)

    Article  CAS  Google Scholar 

  6. N.B. Rithin Kumar, S. Acharya, A. Alhadhrami, B.M. Prasanna, S.C. Gurumurthy, Role of TiO2/ZnO nanofillers in modifying the properties PMMA nanocomposites for optical device applications. Iran. J. Sci. Technol. Trans. Sci. (2021). https://doi.org/10.1007/s40995-021-01183-4

    Article  Google Scholar 

  7. K. Phiwdang, S. Suphankij, W. Mekprasart, W. Pecharapa, Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Proc. 34, 740–745 (2013)

    Article  CAS  Google Scholar 

  8. N. Rajeswari, S. Selvasekarapandian, C. Sanjeeviraja, J. Kawamura, S. Asath Bahadur, A study on polymer blend electrolyte based on PVA/PVP with proton salt. Polym. Bull. 71, 1061–1080 (2014)

    Article  CAS  Google Scholar 

  9. C.V. Subba Reddy, A.K. Sharma, V.V.R. Narasimha Rao, Electrical and optical properties of a polyblend electrolyte. Polymer 47, 1318–1323 (2006)

    Article  CAS  Google Scholar 

  10. Z.D. Dai, L. Ansaloni, D.L. Gin, R.D. Noble, L.Y. Deng, J. Membr. Sci. 523, 551–560 (2017)

    Article  CAS  Google Scholar 

  11. B. Yalagala, S. Khandelwal, J. Deepika, S. Badhulika, Wirelessly destructible MgO-PVP-graphene composite based flexible transient memristor for security applications. Mater. Sci. Semicond. Process. 104, 104673 (2019)

    Article  CAS  Google Scholar 

  12. F.M. Ali, R.M. Kershi, M.A. Sayed, Y.M. AbouDeif, Evaluation of structural and optical properties of Ce3 + ions doped (PVA/PVP) composite films for new organic semiconductors. Physica B Condens. Matter 538, 160–166 (2018)

    Article  CAS  Google Scholar 

  13. S. Mahendia, G. Kandhol, U.P. Deshpande, S. Kumar, Determination of glass transition temperature of reduced graphene oxide-poly(vinyl alcohol) composites using temperature-dependent Fourier transform infrared spectroscopy. J. Mol. Struct. 1111, 46–54 (2016)

    Article  CAS  Google Scholar 

  14. R.F. Bhajantri, V. Ravindrachary, B. Poojary, A. Harisha, V. Crasta, Studies on fluorescent PVA + PVP + MPDMAPP composite films. Polym. Eng. Sci. 49(5), 903–909 (2009)

    Article  CAS  Google Scholar 

  15. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, A. Memic, Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and -negative bacterial strains. Int. J. Nanomed. 7, 3527–3535 (2012)

    Article  CAS  Google Scholar 

  16. X. Peng, S.S. Wong, Functional Covalent Chemistry of Carbon Nanotube Surfaces. Adv. Mater. 21(6), 625–642 (2009). https://doi.org/10.1002/adma.200801464

    Article  CAS  Google Scholar 

  17. R. Jeyaraman, J. Kadarkaraithangam, M. Arumugam, R. Govindasamy, A. Abdul.Synthesis and antimicrobial activity of copper nanoparticles. Mater. Lett. 71, 114–116 (2011)

    Google Scholar 

  18. Z. Liu, L. Jiao, Y. Yao, X. Xian, J. Zhang, Aligned, ultralong single-walled carbon nanotubes: from synthesis, sorting, to electronic devices. Adv. Mater. 22(21), 2285–2310 (2010). https://doi.org/10.1002/adma.200904167

    Article  CAS  PubMed  Google Scholar 

  19. S.H. Park, W.J. Lee, Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries. Sci. Rep. 5, 9754 (2015)

    Article  CAS  Google Scholar 

  20. M. Sahooli, S. Sabbaghi, R. Saboori, Synthesis and characterization of mono sized CuO nanoparticles. Mater. Lett. 81, 169–172 (2012)

    Article  CAS  Google Scholar 

  21. H.M. Zidan, J. Appl. Polym. Sci. 88, 1115–1120 (2003)

    Article  CAS  Google Scholar 

  22. N.B. Rithin Kumar, B.M. Vincent Crasta, Enhancement of optical, mechanical and micro structural properties in nanocomposite films of PVA doped with WO3 nanoparticles. Int. J. Struct. Integr. 6(3), 338–354 (2015)

    Article  Google Scholar 

  23. G.N. Hemanth Kumar, J. Lakshmana Rao, N.O. Gopal, K.V.C. Narasimhulu, R.P.S. Chakradhar, A. Varada Rajulu, Spectroscopic investigation Mn+2 ions doped polyvinyl alcohol films. Polymer 45, 5407–5415 (2004)

    Article  Google Scholar 

  24. E.M. Abdelrazek, A.M. Abdelghany, A.H. Oraby, G.M. Asnag, Investigation of mixed filler effect on optical and structural properties of PEMA films. Int. J. Eng. Technol. 12, 98–102 (2012)

    Google Scholar 

  25. I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P.K. Sharma, A. Sharma, Tailoring of electrical, optical and structural properties of PVA by adding Ag nanoparticles. Mater. Chem. Phys. 139, 802–810 (2013)

    Article  CAS  Google Scholar 

  26. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems. V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903–0922 (1970)

    Article  CAS  Google Scholar 

  27. N.F. Mott, Conduction in non-crystalline systems: IV. Anderson localization in a disordered lattice. Philos. Mag. 22, 7–29 (1970)

    Article  CAS  Google Scholar 

  28. B.A. Collins, J.E. Cochran, H. Yan, E. Gann, C. Hub, R. Fink, C. Wang, T. Schuettfort, C.R. McNeill, M.L. Chabinyc, H. Ade, Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nat. Mater. 11, 536–543 (2012)

    Article  CAS  Google Scholar 

  29. R. Noriega, J. Rivnay, K. Vandewal, F.P. Koch, N. Stingelin, P. Smith, M.F. Toney, A. Salleo, A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013)

    Article  CAS  Google Scholar 

  30. S.D. Kang, G.J. Snyder, Charge-transport model for conducting polymers. Nat. Mater. 16, 252–257 (2017)

    Article  Google Scholar 

  31. S.N. Patel, A.M. Glaudell, K.A. Peterson, E.M. Thomas, K.A. O’Hara, E. Lim, M.L. Chabinyc, Morphology controls the thermoelectric power factor of a doped semiconducting polymer. Sci. Adv. 3, e1700434 (2017)

  32. H.-S. Kim, H.-S. Yang, H.-J. Kim, H.-J. Park, J. Therm. Anal. Calorim. 76, 395–404 (2004)

    Article  CAS  Google Scholar 

  33. G. Zuo, X. Liu, M. Fahlman, M. Kemerink, High seebeck coefficient in mixtures of conjugated polymers. Adv. Funct. Mater. 28, 1703280 (2018)

    Article  Google Scholar 

  34. A.W. Coats, J.P. Redfern, Nature 201, 68–69 (1964)

    Article  CAS  Google Scholar 

  35. A. Broido, J. Polym. Sci. A 2(7), 1761–1773 (1969)

    Article  Google Scholar 

  36. B.G. Shetty, N.B.V. Crasta, R. Kumar, K. Rajesh, R. Bairy, P.S. Patil, Promising PVA/TiO2, CuO filled nanocomposites for electrical and third order nonlinear optical applications. Opt. Mater. 95, 109218 (2019)

  37. E.S. Mora, E.G. Barojas, E.R. Rojas, R.S. Gonzalez, Sol. Energy Mater. Sol. Cells 91, 1412–1415 (2007)

    Article  Google Scholar 

  38. M. Mazzera, M. Zha, D. Calestani, A. Zappettini, L. Lazzarini, G. Salviati, L. Zanotti, Nanotechnology 18, 355707 (2007)

    Article  Google Scholar 

  39. N.B. Rithin Kumar, V. Crasta, B.M. Praveen, Dielectric and electric conductivity studies of PVA (Mowiol 10-98) doped with MWCNTs and WO3 nanocomposites films. Mater. Res. Express 3(5), 055012 (2016)

    Article  Google Scholar 

  40. D. Mardare, G.I. Rusu, Ccomparison of the dielectric properties for doped and undoped TiO2 thin films. J. Optoelectron. Adv. Mater. 6, 333–336 (2004)

    CAS  Google Scholar 

  41. V. Rao, P.V. Ashokan, M.H. Shridhar, Studies of dielectric relaxation and a.c. conductivity in cellulose acetate hydrogen phthalate-poly (methyl methacrylate) blends. Mater. Sci. Eng., A 281, 213–220 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to University of Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan A. H. Alzahrani.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzahrani, H.A.H. CuO and MWCNTs Nanoparticles Filled PVA–PVP Nanocomposites: Morphological, Optical, Thermal, Dielectric, and Electrical Characteristics. J Inorg Organomet Polym 32, 1913–1923 (2022). https://doi.org/10.1007/s10904-022-02233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02233-z

Keywords

Navigation