Skip to main content

Advertisement

Log in

Thermodynamic Analyses on Nanoarchitectonics of Perovskite from Lead Iodide: Arrhenius Activation Energy

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Amongst the different perovskites being investigated for application in solar cells, one of the most frequently scrutinized is methylammonium lead iodide CH3NH3PbI3 (or MAPbI3), which is usually obtained by the reaction of lead iodide (PbI2) with methylammonium iodide (MAI). Although this perovskite has been extensively studied and utilized in the manufacture of high-efficiency solar cells, its formation chemistry is still not well understood. Reliable experimental determination of the activation energy between PbI2 and MAI has been difficult due to the rapid reaction at room temperature. In this work, we determined the activation energy by adopting the Arrhenius equation. This was possible by controlling the reaction using MAI vapor, instead of liquid solution. This procedure allowed the reaction to be carried out at temperatures of up to 150 °C. The formation of MAPbI3 films was obtained by a two-step process: deposition of thin PbI2 film by thermal evaporation and subsequent conversion into perovskite by exposure to MAI vapor. The conversion of PbI2 to MAPbI3 as a function of temperature was probed by X-ray diffraction. An activation energy of 0.12 ± 0.02 eV was obtained. This low value explains the ease of MAPbI3 formation at low temperatures, and partially explains its instability in environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Z. Song, S.C. Watthage, A.B. Phillips, M.J. Heben, J. Photonics Energy 6, 22001 (2016)

    Article  Google Scholar 

  2. M. Grätzel, Nat. Mater. 13, 838 (2014)

    Article  PubMed  Google Scholar 

  3. T. Miyasaka, Chem. Lett. 44, 720 (2015)

    Article  CAS  Google Scholar 

  4. Q. Wang, C. Bi, J. Huang, Nano Energy 15, 275 (2015)

    Article  CAS  Google Scholar 

  5. G. Giorgi, J.I. Fujisawa, H. Segawa, K. Yamashita, J. Phys. Chem. Lett. 4, 4213 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. NREL, Best Research-Cell Efficiency Chart (2021). https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev211011.pdf. Accessed 16 Nov 2021

  7. F. Zhang, H. Lu, J. Tong, J.J. Berry, M.C. Beard, K. Zhu, Energy Environ. Sci. 13, 1154 (2020)

    Article  CAS  Google Scholar 

  8. X. Li, J.M. Hoffman, M.G. Kanatzidis, Chem. Rev. 121, 2230 (2021)

    Article  CAS  PubMed  Google Scholar 

  9. Q. Zhang, Q. Shang, R. Su, T.T.H. Do, Q. Xiong, Nano Lett. 21, 1903 (2021)

    Article  CAS  PubMed  Google Scholar 

  10. Y. He, M. Petryk, Z. Liu, D.G. Chica, I. Hadar, C. Leak, W. Ke, I. Spanopoulos, W. Lin, D.Y. Chung, B.W. Wessels, Z. He, M.G. Kanatzidis, Nat. Photonics 15, 36 (2021)

    Article  CAS  Google Scholar 

  11. A. Baltakesmez, M. Biber, S. Tüzemen, Mater. Today Proc. 18, 1882 (2019)

    Article  CAS  Google Scholar 

  12. R. Wang, M. Mujahid, Y. Duan, Z.K. Wang, J. Xue, Y. Yang, Adv. Funct. Mater. 29, 1 (2019)

    CAS  Google Scholar 

  13. M.S. Holanda, R.F. Moral, P.E. Marchezi, F.C. Marques, A.F. Nogueira, EcoMat 3, 1 (2021)

    Article  Google Scholar 

  14. R.L.Z. Hoye, P. Schulz, L.T. Schelhas, A.M. Holder, K.H. Stone, J.D. Perkins, D. Vigil-Fowler, S. Siol, D.O. Scanlon, A. Zakutayev, A. Walsh, I.C. Smith, B.C. Melot, R.C. Kurchin, Y. Wang, J. Shi, F.C. Marques, J.J. Berry, W. Tumas, S. Lany, V. Stevanović, M.F. Toney, T. Buonassisi, Chem. Mater. 29, 1964 (2017)

    Article  CAS  Google Scholar 

  15. P. Roy, N. Kumar Sinha, S. Tiwari, A. Khare, Sol. Energy 198, 665 (2020)

    Article  CAS  Google Scholar 

  16. M.I.H. Ansari, A. Qurashi, M.K. Nazeeruddin, J. Photochem. Photobiol. C Photochem. Rev. 35, 1 (2018)

    Article  CAS  Google Scholar 

  17. N. Elumalai, M. Mahmud, D. Wang, A. Uddin, Energies 9, 861 (2016)

    Article  Google Scholar 

  18. Y. Matsuo, Bull. Chem. Soc. Jpn. 94, 1080 (2021)

    Article  CAS  Google Scholar 

  19. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. M.J. Carnie, C. Charbonneau, M.L. Davies, J. Troughton, T.M. Watson, K. Wojciechowski, H. Snaith, D.A. Worsley, Chem. Commun. 49, 7893 (2013)

    Article  CAS  Google Scholar 

  21. J.M.C. da Silva Filho, N.F.V. Borrero, G.A. Viana, R.B. Merlo, F.C. Marques, Cryst. Growth Des. 20, 1531 (2020)

    Article  Google Scholar 

  22. J.M.C. da Silva Filho, V.A. Ermakov, F.C. Marques, Sci. Rep. 8, 1563 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  23. J.M.C. da Silva Filho, R. Landers, F.C. Marques, J. Inorg. Organomet. Polym. Mater. 29, 2161 (2019)

    Article  Google Scholar 

  24. H. Huang, J. Shi, L. Zhu, D. Li, Y. Luo, Q. Meng, Nano Energy 27, 352 (2016)

    Article  CAS  Google Scholar 

  25. A.T. Barrows, A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, D.G. Lidzey, Energy Environ. Sci. 7, 2944 (2014)

    Article  CAS  Google Scholar 

  26. V.M. Koch, M.K.S. Barr, P. Büttner, I. Mínguez-Bacho, D. Döhler, B. Winzer, E. Reinhardt, D. Segets, J. Bachmann, J. Mater. Chem. A 7, 25112 (2019)

    Article  CAS  Google Scholar 

  27. B.R. Sutherland, S. Hoogland, M.M. Adachi, P. Kanjanaboos, C.T.O. Wong, J.J. McDowell, J. Xu, O. Voznyy, Z. Ning, A.J. Houtepen, E.H. Sargent, Adv. Mater. 27, 53 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. T.-B. Song, Q. Chen, H. Zhou, C. Jiang, H.-H. Wang, Y. Yang, Y. Liu, J. You, Y. Yang, J. Mater. Chem. A 3, 9032 (2015)

    Article  CAS  Google Scholar 

  29. A. Buin, P. Pietsch, J. Xu, O. Voznyy, A.H. Ip, R. Comin, E.H. Sargent, Nano Lett. 14, 6281 (2014)

    Article  CAS  PubMed  Google Scholar 

  30. B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, H.-G. Boyen, Adv. Energy Mater. 5, 1500477 (2015)

    Article  Google Scholar 

  31. C. Quarti, E. Mosconi, F. De Angelis, Chem. Mater. 26, 6557 (2014)

    Article  CAS  Google Scholar 

  32. W.-J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett. 104, 063903 (2014)

    Article  Google Scholar 

  33. I.E. Castelli, J.M. García-Lastra, K.S. Thygesen, K.W. Jacobsen, APL Mater. 2, 081514 (2014)

    Article  Google Scholar 

  34. T.M. Brenner, Y. Rakita, Y. Orr, E. Klein, I. Feldman, M. Elbaum, D. Cahen, G. Hodes, Chem. Mater. 28, 6501 (2016)

    Article  CAS  Google Scholar 

  35. D.T. Moore, H. Sai, K.W. Tan, D.M. Smilgies, W. Zhang, H.J. Snaith, U. Wiesner, L.A. Estroff, J. Am. Chem. Soc. 137, 2350 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. G.P. Nagabhushana, R. Shivaramaiah, A. Navrotsky, Proc. Natl. Acad. Sci. USA 113, 7717 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. N.F. Coutinho, R.B. Merlo, N.F.V. Borrero, F.C. Marques, MRS Adv. 3, 3233 (2018)

    Article  CAS  Google Scholar 

  38. A. Fick, Ann. Phys. 170(1), 59 (1855)

    Article  Google Scholar 

  39. J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, S. Yang, Nanoscale 5, 3245 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. J. Yu, X. Chen, Y. Wang, H. Zhou, M. Xue, Y. Xu, Z. Li, C. Ye, J. Zhang, P.A. van Aken, P.D. Lund, H. Wang, J. Mater. Chem. C 4, 7302 (2016)

    Article  CAS  Google Scholar 

  41. P.P. Khlyabich, Y.-L. Loo, Chem. Mater. 28, 9041 (2016)

    Article  CAS  Google Scholar 

  42. B. Wang, K. Young Wong, X. Xiao, T. Chen, Sci. Rep. 5, 10557 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from FAPESP (the São Paulo Research Foundation, Processes 2017/11986-5), Shell, the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation, the Brazilian research funding agencies INCT/INES/CNPq (Grant 465423/2014-0), the National Council of Technological and Scientific Development—CNPq (grant 302349/2021-9, 435260/2018-9 and 306297/2017-5), and the Coordination for the Improvement of Higher Education Personnel (CAPES)—Finance Code 001. We would also like to thank the multi-user laboratory of the Gleb Wataghin Physics Institute (LAMULT) for the XRD measurements, CCS/UNICAMP for SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Maria C. da Silva Filho.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borrero, N.F.V., da Silva Filho, J.M.C., Coutinho, N.F. et al. Thermodynamic Analyses on Nanoarchitectonics of Perovskite from Lead Iodide: Arrhenius Activation Energy. J Inorg Organomet Polym 32, 1259–1265 (2022). https://doi.org/10.1007/s10904-021-02169-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02169-w

Keywords

Navigation