Skip to main content

Advertisement

Log in

Enhanced Photocatalytic Performance of Zinc Ferrite Nanocomposites for Degrading Methylene Blue: Effect of Nickel Doping Concentration

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the present work, undoped and nickel doped zinc ferrite (ZnFe2−xNixO4) nano-composites were synthesized using a facile auto-combustion method using glycine as fuel. Effects of Ni dopant concentration and annealing process on structural and morphological properties were investigated by X-ray Diffraction (XRD), Raman spectroscopy, Fourier Transform InfraRed (FTIR) spectroscopy, and Scanning Electron Microscopy/Energy-dispersive X-ray spectroscopy (SEM/EDS). The formation of cubic spinel ferrites is confirmed by XRD analysis while asserting particles with a size range of 55–58 nm. Analysis of Raman spectra showed a transition of normal to inverse spinel-type with the increase in Ni content. Photocatalytic studies of as-synthesized nanoparticles using methylene blue (MB) demonstrated a strong correlation between photocatalytic efficiency and Ni doping. Ni-doped zinc-ferrites exhibited 98% photocatalytic efficiency at an optimum Ni doping concentration of 30%. As-synthesized ferrites have the potential to be used as an efficient, reusable, and magnetically removable photocatalyst system for removing organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.B. Baird et al., Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington DC, 2017).

    Google Scholar 

  2. G. Muthuraman, T.T. Teng, Extraction and recovery of rhodamine B, methyl violet and methylene blue from industrial wastewater using D2EHPA as an extractant. J. Ind. Eng. Chem. 15(6), 841–846 (2009)

    Article  CAS  Google Scholar 

  3. R.S. Razmara, A. Daneshfar, R. Sahrai, Determination of methylene blue and sunset yellow in wastewater and food samples using salting-out assisted liquid–liquid extraction. J. Ind. Eng. Chem. 17(3), 533–536 (2011)

    Article  CAS  Google Scholar 

  4. S. Li et al., Fast photocatalytic degradation of dyes using low-power laser-fabricated Cu2O–Cu nanocomposites. RSC Adv. 8(36), 20277–20286 (2018)

    Article  CAS  Google Scholar 

  5. K.M. Lee, S.B.A. Hamid, C.W. Lai, Multivariate analysis of photocatalytic-mineralization of eriochrome black T dye using ZnO catalyst and UV irradiation. Mater. Sci. Semicond. Process 39, 40–48 (2015)

    Article  CAS  Google Scholar 

  6. G. Sharma et al., Guar gum-crosslinked-Soya lecithin nanohydrogel sheets as effective adsorbent for the removal of thiophanate methyl fungicide. Int. J. Biol. Macromol. 114, 295–305 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. M. Wang et al., Enhanced removal of heavy metals and phosphate in stormwater filtration systems amended with drinking water treatment residual-based granules. J. Environ. Manag. 280, 111645 (2021)

    Article  CAS  Google Scholar 

  8. D. Pathania et al., Fabrication of nanocomposite polyaniline zirconium(IV) silicophosphate for photocatalytic and antimicrobial activity. J. Alloys Compd. 588, 668–675 (2014)

    Article  CAS  Google Scholar 

  9. P.C. Vandevivere, R. Bianchi, W. Verstraete, Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J. Chem. Technol. Biotechnol. 72(4), 289–302 (1998)

    Article  CAS  Google Scholar 

  10. Y. Liao et al., Effects of heat treatment scheme on the photocatalytic activity of TiO2 nanotube powders derived by a facile electrochemical process. J. Alloys Compd. 509(3), 1054–1059 (2011)

    Article  CAS  Google Scholar 

  11. A. Hajjaji et al., Photocatalytic activity of Cr-doped TiO2 nanoparticles deposited on porous multicrystalline silicon films. Nanoscale Res. Lett. 9(1), 1–6 (2014)

    Article  CAS  Google Scholar 

  12. Y. Meor et al., Photocatalytic active nanorutile TiO2: synthesis characterization and photocatalysis tests. J. Nano Res. 26, 17–23 (2014)

    Article  CAS  Google Scholar 

  13. A. Barnasas et al., Growth and characterization of nanostructured Ag-ZnO for application in water purification. J. Nano Res. 62, 75–86 (2020)

    Article  CAS  Google Scholar 

  14. G. Sharma et al., Highly efficient Sr/Ce/activated carbon bimetallic nanocomposite for photoinduced degradation of rhodamine B. Catal. Today 33, 437–451 (2019)

    Article  CAS  Google Scholar 

  15. G. Sharma et al., Preparation, characterization and antimicrobial activity of biopolymer based nanocomposite ion exchanger pectin zirconium (IV) selenotungstophosphate: application for removal of toxic metals. J. Ind. Eng. Chem. 20(6), 4482–4490 (2014)

    Article  CAS  Google Scholar 

  16. B.I. Kharisov, H.R. Dias, O.V. Kharissova, Mini-review: ferrite nanoparticles in the catalysis. Arab. J. Chem. 12(7), 1234–1246 (2019)

    Article  CAS  Google Scholar 

  17. N.M. Mahmoodi, Zinc ferrite nanoparticle as a magnetic catalyst: synthesis and dye degradation. Mater. Res. Bull. 48(10), 4255–4260 (2013)

    Article  CAS  Google Scholar 

  18. H.R. Rajabi et al., Green synthesis of zinc sulfide nanophotocatalysts using aqueous extract of Ficus Johannis plant for efficient photodegradation of some pollutants. J. Mater. Res. Technol. 9(6), 15638–15647 (2020)

    Article  CAS  Google Scholar 

  19. H.R. Rajabi et al., Fast sonochemically-assisted synthesis of pure and doped zinc sulfide quantum dots and their applicability in organic dye removal from aqueous media. J. Photochem. Photobiol. B 181, 98–105 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. M. Roushani et al., Application of graphene quantum dots as green homogenous nanophotocatalyst in the visibl e-light-driven photolytic process. J. Mater. Sci. 28, 5135–5143 (2017)

    CAS  Google Scholar 

  21. J.S. Jang, S.J. Hong, J.S. Lee, P.H. Borse, O.S. Jung, T.E. Hong, H.G. Kim, Synthesis of zinc ferrite and its photocatalytic application under visible light. J. Korean Phys. Soc. 54(1), 204–208 (2009)

    Article  CAS  Google Scholar 

  22. P.H. Borse, J.S. Jang, S.J. Hong, J.S. Lee, J.H. Jung, T.E. Hong, H.G. Kim, Photocatalytic hydrogen generation from water-methanol mixtures using nanocrystalline ZnFe2O4 under visible light irradiation. J. Korean Phys. Soc 55(4), 1472–1477 (2009)

    Article  CAS  Google Scholar 

  23. J. Ye et al., Photocatalytic simultaneous removal of nitrite and ammonia via a zinc ferrite/activated carbon hybrid catalyst under UV–Visible irradiation. ACS Omega 4(4), 6411–6420 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. R. Dom, R. Subasri, N.Y. Hebalkar, A.S. Chary, P.H. Borse, Synthesis of a hydrogen producing nanocrystalline ZnFe2O4 visible light photocatalyst using a rapid microwave irradiation method. RSC Adv. 2(33), 12782–12791 (2012)

    Article  CAS  Google Scholar 

  25. N.D. Raskar et al., One step synthesis of vertically grown Mn-doped ZnO nanorods for photocatalytic application. J. Mater. Sci. 30(11), 10886–10899 (2019)

    CAS  Google Scholar 

  26. A. Gedanken, et al., Google Patents, Sonochemical coating of textiles with metal oxide nanoparticles for antimicrobial fabrics, 2019

  27. Y.I. Kim, D. Kim, C.S. Lee, Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Phys. B 337(1–4), 42–51 (2003)

    Article  CAS  Google Scholar 

  28. A. Bhosale et al., Influential incorporation of RE metal ion (Dy3+) in yttrium iron garnet (YIG) nanoparticles: magnetic, electrical and dielectric behaviour. Ceram. Int. 46(10), 15372–15378 (2020)

    Article  CAS  Google Scholar 

  29. D. Ponnamma et al., Synthesis, optimization and applications of ZnO/polymer nanocomposites. Mater. Sci. Eng. C 98, 1210–1240 (2019)

    Article  CAS  Google Scholar 

  30. S. Singamaneni et al., Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J. Mater. Chem. 21(42), 16819–16845 (2011)

    Article  CAS  Google Scholar 

  31. Y. Bao et al., Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J. Mater. Sci. 51(1), 513–553 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. C.-C. Hwang, J.-S. Tsai, T.-H. Huang, Combustion synthesis of Ni–Zn ferrite by using glycine and metal nitrates—Investigations of precursor homogeneity, product reproducibility, and reaction mechanism. Mater. Chem. Phys. 93(2–3), 330–336 (2005)

    Article  CAS  Google Scholar 

  33. M. Gaidi et al., Enhanced photocatalytic activities of silicon nanowires/graphene oxide nanocomposite: effect of etching parameters. J. Environ. Sci. 101, 123–134 (2020)

    Article  Google Scholar 

  34. A. Guinier, Théorie et technique de la radiocristallographie. Dunod (1964)

  35. W. Meng et al., Photocatalytic activity of highly porous zinc ferrite prepared from a zinc-iron (III)-sulfate layered double hydroxide precursor. J. Porous Mater. 11(2), 97–105 (2004)

    Article  CAS  Google Scholar 

  36. S. Phumying et al., Nanocrystalline spinel ferrite (MFe2O4, M=Ni Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route. Mater. Res. Bull. 48, 2060–2065 (2013)

    Article  CAS  Google Scholar 

  37. R.S. Yadav et al., Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method. J. Phys. Chem. Solids 110, 87–99 (2017)

    Article  CAS  Google Scholar 

  38. M. Rezaei et al., Selective and rapid extraction of piroxicam from water and plasma samples using magnetic imprinted polymeric nanosorbent: synthesis, characterization and application. Colloids Surf. A 586, 124253 (2020)

    Article  CAS  Google Scholar 

  39. H.M. Rajabi et al., Comparison investigation on photocatalytic activity performance and adsorption efficiency for the removal of cationic dye: quantum dots vs. magnetic nanoparticles. J. Environ. Chem. Eng. 4(3), 2830–2840 (2016)

    Article  CAS  Google Scholar 

  40. R. Rameshbabu et al., Synthesis and study of structural, morphological and magnetic properties of ZnFe2O4 nanoparticles. J. Supercond. Novel Magn. 27(6), 1499–1502 (2013)

    Article  CAS  Google Scholar 

  41. A. Lassoued et al., Photocatalytic degradation of methyl orange dye by NiFe2O4 nanoparticles under visible irradiation: effect of varying the synthesis temperature. J. Mater. Sci. Mater. Electron. 29, 7057–7067 (2018)

    Article  CAS  Google Scholar 

  42. M.M. Naik et al., Green synthesis of zinc ferrite nanoparticles in Limoniaacidissima juice: characterization and their application as photocatalytic and antibacterial activities. Microchem. J. 146, 1227–1235 (2019)

    Article  CAS  Google Scholar 

  43. G. Padmapriya et al., Spinel NixZn1−xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: synthesis, characterization and photocatalytic degradation of methylene blue dye. J. Mol. Struct. 1119, 39–47 (2016)

    Article  CAS  Google Scholar 

  44. P. Dhiman et al., Nano FexZn1−xO as a tuneable and efficient photocatalyst for solar powered degradation of bisphenol A from aqueous environment. J. Clean. Prod. 165, 1542–1556 (2017)

    Article  CAS  Google Scholar 

  45. G. Sharma et al., Fabrication and characterization of novel Fe0@Guar gum-crosslinked-soya lecithin nanocomposite hydrogel for photocatalytic degradation of methyl violet dye. Sep. Purif. Technol. 211, 895–908 (2019)

    Article  CAS  Google Scholar 

  46. D. Chahar et al., Photocatalytic activity of cobalt substituted zinc ferrite for the degradation of methylene blue dye under visible light irradiation. J. Alloys Compd. 851, 156878 (2021)

    Article  CAS  Google Scholar 

  47. S.A. Jadhav et al., Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B. J. Mater. Sci. 31, 11352–11365 (2020)

    CAS  Google Scholar 

  48. S. Gul et al., Al-substituted zinc spinel ferrite nanoparticles: preparation and evaluation of structural, electrical, magnetic and photocatalytic properties. Ceram. Int. 46(9), 14195–14205 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the directorate general of scientific research and technological development DGRSDT of Algeria. The authors would like to acknowledge the financial support from the University of Sharjah (Targeted Project Grant No. 2102143096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannat Hammouche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammouche, J., Gaidi, M., Columbus, S. et al. Enhanced Photocatalytic Performance of Zinc Ferrite Nanocomposites for Degrading Methylene Blue: Effect of Nickel Doping Concentration. J Inorg Organomet Polym 31, 3496–3504 (2021). https://doi.org/10.1007/s10904-021-01960-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01960-z

Keywords

Navigation