Skip to main content
Log in

Structural, Morphological and Biological Features of ZnO Nanoparticles Using Hyphaene thebaica (L.) Mart. Fruits

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Pure zinc oxide NPs (ZnO NPs) have been synthesized using a simple eco-friendly approach using fruit extracts of Hyphaene thebaica. XRD pattern indicated zincite and highly crystalline phase of ZnO NPs. UV–Vis spectrum revealed surface plasmon resonance at 372 nm and bandgap of 3.36 eV. FTIR spectrum indicated characteristic Zn–O vibration at 450 cm−1. HRTEM images indicated particle size in the range of 8–23 nm having a quasi spherical morphology. Raman shift was observed at 297 cm−1, 405 cm−1 and 548 cm−1. Excellent protein kinase (PK) inhibition and varying antimicrobial potential against different bacterial and fungal strains is reported. E. coli and A. flavus were found as the most susceptible microbial strains. Hemocompatability of the ZnO NPs was revealed. ZnO NPs indicated a dose dependant cytotoxicity. MTT assay revealed a median lethal concentration (IC50) of 106 µg/mL against Leishmania tropica. Different antioxidant assays indicated the antioxidant potential of ZnO NPs. Hyphaene thebaica mediated ZnO NPs revealed excellent therapeutic performance and can used as a potential candidate for diverse biomedical applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Scarano et al., Zinc oxide nanostructures: from chestnut husk-like structures to hollow nanocages, synthesis and structure. Crystals 8(4), 153 (2018)

    Google Scholar 

  2. S.M. Aberoumandi et al., An update on applications of nanostructured drug delivery systems in cancer therapy: a review. Artif. Cells Nanomed. Biotechnol. 45(6), 1058–1068 (2017)

    CAS  Google Scholar 

  3. A. Akbarzadeh et al., Nanomaterials toxin contamination in laboratories and potential harmful effects of their products: a review. Toxin Rev. 35(3–4), 180–186 (2016)

    CAS  Google Scholar 

  4. Y. Panahi et al., Preparation, surface properties, and therapeutic applications of gold nanoparticles in biomedicine. Drug Res. 11(02), 77–87 (2017)

    Google Scholar 

  5. P. Sharma et al., Green synthesis of colloidal copper nanoparticles capped with Tinospora cordifolia and its application in catalytic degradation in textile dye: an ecologically sound approach. J. Inorg. Organomet. Polym. Mater. 28(6), 2463–2472 (2018)

    CAS  Google Scholar 

  6. B.K. Nanjwade, A.B. Sarkar, T. Srichana, Design and characterization of nanoparticulate drug delivery, in characterization and biology of nanomaterials for drug delivery (Elsevier, New York, 2019), pp. 337–350

    Google Scholar 

  7. S. Nizamuddin, et al., Iron oxide nanomaterials for the removal of heavy metals and dyes from wastewater, in Nanoscale Materials in Water Purification (Elsevier, London, 2019), pp. 447–472.

  8. A. Gallo et al., Synthesis of eco-compatible bimetallic silver/iron nanoparticles for water remediation and reactivity assessment on bromophenol blue. J. Clean. Prod. 211, 1367–1374 (2019)

    CAS  Google Scholar 

  9. M. Ovais et al., Phyto-therapeutic and nanomedicinal approaches to cure Alzheimer’s disease: present status and future opportunities. Front. Aging Neurosci. 10, 284 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. E. Ismail et al., Green biosynthesis of ruthenium oxide nanoparticles on nickel foam as electrode material for supercapacitor applications. RSC Adv. 6(90), 86843–86850 (2016)

    CAS  Google Scholar 

  11. H. Dai et al., Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film. Sens. Actuators B 283, 786–792 (2019)

    CAS  Google Scholar 

  12. M. Bindhu, M. Umadevi, Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim. Acta A 135, 373–378 (2015)

    CAS  Google Scholar 

  13. J. Ali et al., Synthesis and characterization of phytochemical fabricated zinc oxide nanoparticles with enhanced antibacterial and catalytic applications. J. Photochem. Photobiol. B 183, 349–356 (2018)

    CAS  PubMed  Google Scholar 

  14. A.T. Khalil et al., Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif. Cells Nanomed. Biotechnol. 46(4), 838–852 (2018)

    CAS  PubMed  Google Scholar 

  15. D. Hassan et al., Physiochemical properties and novel biological applications of Callistemon viminalis-mediated α-Cr2O3 nanoparticles. Appl. Organomet. Chem. 33, e5041 (2019)

    Google Scholar 

  16. G. Somasundaram, J. Rajan, Ascendancy of Polianthes tuberosa, Nerium oleander, Hibiscus rosa sinensis and Dalia flower extracts on CdO nanoparticle morphologies and their effectiveness in photocatalytic and antimicrobial activities. J. Inorg. Organomet. Polym. Mater. 29(6), 2145–2160 (2019)

    CAS  Google Scholar 

  17. G. Nabi, W. Raza, M. Tahir, Green synthesis of TiO2 nanoparticle using cinnamon powder extract and the study of optical properties. J. Inorgan. Organom. Polym. Mater. 28, 1–5 (2019)

    Google Scholar 

  18. V.V. Mody et al., Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2(4), 282 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. A.T. Khalil et al., Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomedicine 12(15), 1767–1789 (2017)

    CAS  PubMed  Google Scholar 

  20. Z.L. Wang, Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology. ACS Nano 2(10), 1987–1992 (2008)

    CAS  PubMed  Google Scholar 

  21. F. Thema et al., Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater. Lett. 161, 124–127 (2015)

    CAS  Google Scholar 

  22. M. Al-Fori et al., Antifouling properties of zinc oxide nanorod coatings. Biofouling 30(7), 871–882 (2014)

    CAS  PubMed  Google Scholar 

  23. M. Khatami et al., Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustain. Chem. Pharm. 10, 9–15 (2018)

    Google Scholar 

  24. H. Mirzaei, M. Darroudi, Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram. Int. 43(1), 907–914 (2017)

    CAS  Google Scholar 

  25. M. Ovais et al., Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int. J. Mol. Sci. 19(12), 4100 (2018)

    PubMed Central  Google Scholar 

  26. A.T. Khalil et al., Bioinspired synthesis of pure massicot phase lead oxide nanoparticles and assessment of their biocompatibility, cytotoxicity and in-vitro biological properties. Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.08.009

    Article  Google Scholar 

  27. D. Hassan et al., Biosynthesis of pure hematite phase magnetic iron oxide nanoparticles using floral extracts of Callistemon viminalis (bottlebrush): their physical properties and novel biological applications. Artif. Cells Nanomed. Biotechnol. 46, 1–15 (2018)

    Google Scholar 

  28. M. Mohammadhosseini et al., The genus Ferula: ethnobotany, phytochemistry and bioactivities—a review. Ind. Crops Prod. 129, 350–394 (2019)

    CAS  Google Scholar 

  29. A. Shah et al., Daphne mucronata-mediated phytosynthesis of silver nanoparticles and their novel biological applications, compatibility and toxicity studies. Green Chem. Lett. Rev. 11(3), 318–333 (2018)

    CAS  Google Scholar 

  30. T. Abdelghany et al., Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. BioNanoScience 8(1), 5–16 (2018)

    Google Scholar 

  31. B.A. Abbasi et al., Bioactivities of Geranium wallichianum leaf extracts conjugated with zinc oxide nanoparticles. Biomolecules 10(1), 38 (2020)

    CAS  Google Scholar 

  32. N.I. Rasli, H. Basri, Z. Harun, Zinc oxide from aloe vera extract: two-level factorial screening of biosynthesis parameters. Heliyon 6(1), e03156 (2020)

    PubMed  PubMed Central  Google Scholar 

  33. F. Abdullah, N.A. Bakar, M.A. Bakar, Low temperature biosynthesis of crystalline zinc oxide nanoparticles from Musa acuminata peel extract for visible-light degradation of methylene blue. Optik 206, 164279 (2020)

    CAS  Google Scholar 

  34. M. Rajan et al., Comparative study of biological (Phoenix loureiroi fruit) and chemical synthesis of chitosan-encapsulated zinc oxide nanoparticles and their biological properties. Arab. J. Sci. Eng. 45(1), 15–28 (2020)

    CAS  Google Scholar 

  35. S. Hameed et al., Green synthesis of zinc nanoparticles through plant extracts: establishing a novel era in cancer theranostics. Mater. Res. Express 6(10), 102005 (2019)

    CAS  Google Scholar 

  36. G. Baskar et al., Synthesis of phytonanocomposite of zinc oxide by Ixora coccinea Linn for cancer treatment. J. Inorg. Organomet. Polym. Mater. 26(4), 876–880 (2016)

    CAS  Google Scholar 

  37. E.E. Elemike, D.C. Onwudiwe, M. Singh, Eco-friendly synthesis of copper oxide, zinc oxide and copper oxide–zinc oxide nanocomposites, and their anticancer applications. J. Inorg. Organomet. Polym. Mater. 30(2), 400–409 (2020)

    CAS  Google Scholar 

  38. N.A. Khalil, A.A. Motaal, K. Meselhy, Renin and angiotensin converting enzyme inhibition of standardized bioactive fractions of Hyphaene thebaica L. Mart growing in Egypt. Pharmacogn. J. 10(4), 622–627 (2018)

    CAS  Google Scholar 

  39. A.T. Khalil et al., Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.07.004

    Article  Google Scholar 

  40. A.T. Khalil et al., Antibacterial activity of honey in north-west Pakistan against select human pathogens. J. Tradit. Chin. Med. 34(1), 86–89 (2014)

    PubMed  Google Scholar 

  41. A. Ali et al., ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties. Mater. Sci. Eng. C 74, 137–145 (2017)

    CAS  Google Scholar 

  42. D. Malagoli, A full-length protocol to test hemolytic activity of palytoxin on human erythrocytes. Invertebr. Surviv. J. 4(2), 92–94 (2007)

    Google Scholar 

  43. H. Fatima et al., Extraction optimization of medicinally important metabolites from Datura innoxia Mill.: an in vitro biological and phytochemical investigation. BMC Complement. Altern. Med. 15(1), 376 (2015)

    PubMed  PubMed Central  Google Scholar 

  44. G. Karunakaran et al., Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions. IET Nanobiotechnol. 10(4), 171–177 (2016)

    PubMed  Google Scholar 

  45. L. Jafri et al., In vitro assessment of antioxidant potential and determination of polyphenolic compounds of Hedera nepalensis K. Koch. Arab. J. Chem. 10, S3699–S3706 (2017)

    CAS  Google Scholar 

  46. R. Javed et al., Effect of capping agents: structural, optical and biological properties of ZnO nanoparticles. Appl. Surf. Sci. 386, 319–326 (2016)

    CAS  Google Scholar 

  47. D. Sharma, R. Jha, Analysis of structural, optical and magnetic properties of Fe/Co co-doped ZnO nanocrystals. Ceram. Int. 43(11), 8488–8496 (2017)

    CAS  Google Scholar 

  48. S. Fakhari, M. Jamzad, H. Kabiri-Fard, Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem. Lett. Rev. 12(1), 19–24 (2019)

    CAS  Google Scholar 

  49. A.K. Zak et al., Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceram. Int. 37(1), 393–398 (2011)

    CAS  Google Scholar 

  50. S. Rajeshkumar et al., Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme Microb Technol 117, 91–95 (2018)

    CAS  PubMed  Google Scholar 

  51. H. Umar, D. Kavaz, N. Rizaner, Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int. J. Nanomed. 14, 87 (2019)

    CAS  Google Scholar 

  52. S. Vijayakumar et al., Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC. Microb. Pathog. 116, 44–48 (2018)

    CAS  PubMed  Google Scholar 

  53. M. Akbarian et al., Urtica dioica L. extracts as a green catalyst for the biosynthesis of zinc oxide nanoparticles: characterization and cytotoxic effects on fibroblast and MCF-7 cell lines. New J. Chem. 42(8), 5822–5833 (2018)

    CAS  Google Scholar 

  54. A.P. Ashokan et al., Toxicity on dengue mosquito vectors through Myristica fragrans-synthesized zinc oxide nanorods, and their cytotoxic effects on liver cancer cells (HepG2). J. Clust. Sci. 28(1), 205–226 (2017)

    CAS  Google Scholar 

  55. G. Sathishkumar et al., Facile biosynthesis of antimicrobial zinc oxide (ZnO) nanoflakes using leaf extract of Couroupita guianensis Aubl. Mater. Lett. 188, 383–386 (2017)

    CAS  Google Scholar 

  56. W. Aboshora et al., Volatile flavor compounds of peel and pulp from Doum (Hyphaene thebaica L.) fruit. Am. J. Food Sci. Nutr. Res. 4(5), 165–169 (2017)

    Google Scholar 

  57. W. Aboshora et al., Effect of extraction method and solvent power on polyphenol and flavonoid levels in Hyphaene thebaica L. mart (Arecaceae)(Doum) fruit, and its antioxidant and antibacterial activities. Trop. J. Pharm. Res. 13(12), 2057–2063 (2014)

    CAS  Google Scholar 

  58. B. Hsu, I.M. Coupar, K. Ng, Antioxidant activity of hot water extract from the fruit of the Doum palm, Hyphaene thebaica. Food Chem 98(2), 317–328 (2006)

    CAS  Google Scholar 

  59. M. Ovais et al., Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl. Microbiol. Biotechnol. 102, 6799–6814 (2018)

    CAS  PubMed  Google Scholar 

  60. E.C. Alegria et al., Effect of phenolic compounds on the synthesis of gold nanoparticles and its catalytic activity in the reduction of nitro compounds. Nanomaterials 8(5), 320 (2018)

    PubMed Central  Google Scholar 

  61. D. Suresh et al., Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: luminescence, photocatalytic and antioxidant properties. Spectrochim. Acta A 141, 128–134 (2015)

    CAS  Google Scholar 

  62. N. Bala et al., Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 5(7), 4993–5003 (2015)

    CAS  Google Scholar 

  63. Y.J. Shim et al., Zinc oxide nanoparticles synthesized by Suaeda japonica Makino and their photocatalytic degradation of methylene blue. Optik (2018). https://doi.org/10.1016/j.ijleo.2018.11.144

    Article  Google Scholar 

  64. P. Murmu et al., Structural and photoluminescence properties of Gd implanted ZnO single crystals. J. Appl. Phys. 110(3), 033534 (2011)

    Google Scholar 

  65. H.R. Ghorbani et al., Synthesis of ZnO nanoparticles by precipitation method. Orient. J. Chem. 31(2), 1219–1221 (2015)

    CAS  Google Scholar 

  66. M. Ramesh, M. Anbuvannan, G. Viruthagiri, Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim. Acta A 136, 864–870 (2015)

    CAS  Google Scholar 

  67. S.K. Chaudhuri, L. Malodia, Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: characterization and its evaluation on tree seedling growth in nursery stage. Appl. Nanosci. 7(8), 501–512 (2017)

    CAS  Google Scholar 

  68. A. Chaudhary et al., Antimicrobial activity of zinc oxide nanoparticles synthesized from Aloe vera peel extract. SN Appl. Sci. 1(1), 136 (2019)

    Google Scholar 

  69. J. Gopal et al., Assays evaluating antimicrobial activity of nanoparticles: a myth buster. J. Clust. Sci. 29(2), 207–213 (2018)

    CAS  Google Scholar 

  70. B. Waters et al., Identifying protein kinase inhibitors using an assay based on inhibition of aerial hyphae formation in Streptomyces. J. Antibiot. 55(4), 407–416 (2002)

    CAS  PubMed  Google Scholar 

  71. Z.U.H. Khan et al., Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications. J. Photochem. Photobiol. B 192, 147–157 (2019)

    PubMed  Google Scholar 

  72. R. Gupta et al., Antioxidant and physicochemical study of Psidium guajava prepared zinc oxide nanoparticles. J. Mol. Liq. 275, 749–767 (2019)

    CAS  Google Scholar 

  73. N. Supraja et al., Synthesis, characterization and evaluation of antimicrobial efficacy and brine shrimp lethality assay of Alstonia scholaris stem bark extract mediated ZnONPs. Biochem. Biophys. Rep. 14, 69–77 (2018)

    PubMed  PubMed Central  Google Scholar 

  74. P.J. Hotez, L. Savioli, A. Fenwick, Neglected tropical diseases of the Middle East and North Africa: review of their prevalence, distribution, and opportunities for control. PLoS Neglect. Trop. Dis. 6(2), e1475 (2012)

    Google Scholar 

  75. M. Delavari et al., In vitro study on cytotoxic effects of ZnO nanoparticles on promastigote and amastigote forms of Leishmania major (MRHO/IR/75/ER). Iran. J. Parasitol. 9(1), 6 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  76. S. Hameed et al., Greener synthesis of ZnO and Ag–ZnO nanoparticles using Silybum marianum for diverse biomedical applications. Nanomedicine 14(6), 655–673 (2019)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, and the National Research Foundation of South Africa, Abdul Salam International Centre for Theoretical Physics (ICTP) via the Nanosciences African Network to whom we are all grateful. Assistance in HR-SEM, HR-TEM, SAED etc. by the staff of Electron Microscopy Unit of the University of Western Cape is highly acknowledged. Assistance from the Molecular Systematics and Applied Ethnobotany Lab of the Department of Biotechnology, Quaid-i-Azam University, Islamabad, is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

HEAM, SA and DZ performed the experimental part. HEAM performed the synthesis of nanoparticles and their characterisations. SA and DZ performed the biological activities. ATK drafted the manuscript, interpreted the results. ZKS and MM conceptualized the idea and provided facilities to perform the experiments. MSD helped in results interpretation, reviewing and gave valuable suggestions.

Corresponding author

Correspondence to Ali Talha Khalil.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, H.E.A., Afridi, S., Khalil, A.T. et al. Structural, Morphological and Biological Features of ZnO Nanoparticles Using Hyphaene thebaica (L.) Mart. Fruits. J Inorg Organomet Polym 30, 3241–3254 (2020). https://doi.org/10.1007/s10904-020-01490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01490-0

Keywords

Navigation