Skip to main content
Log in

Coordination Polymer Based on Nickel(II) Maleate and 4′-Phenyl-2,2′:6′,2″-Terpyridine: Synthesis, Crystal Structure and Conjugated Thermolysis

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

New complex (1) based on nickel(II) maleate and 4′-phenyl-2,2′:6′,2″-terpyridine (L) was synthesized. The complex 1 is a 1D coordination polymer formed from a L-Ni(II) node bridged by maleate ligands and crystallizes in monoclinic form with space group P21/n. There are two Ni(II) moiety’s in the asymmetric unit. Each nickel atom is five coordination and is chelated by three nitrogen atoms of L and two oxygen atoms of Mal fragments with the formation of a NiN3O2 chelate node. The polyhedron of the first Ni(II) moiety is close to the ideal tetragonal pyramidal structure, while the polyhedron of the second Ni(II) moiety belongs to the distorted tetragonal pyramidal structure. The main stages and kinetics features of the conjugated thermolysis of complex 1 were evaluated. Metal–polymer nanocomposite containing Ni nanoparticles uniformly distributed in a stabilizing nitrogen-containing polymer matrix was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. G.I. Dzhardimalieva, I.E. Uflyand, Design and synthesis of coordination polymers with chelated units and their application in nanomaterials science. RSC Adv. 7, 42242–42288 (2017)

    CAS  Google Scholar 

  2. A.D. Pomogailo, G.I. Dzhardimalieva, A.S. Rozenberg, D.M. Muraviev, Kinetics and mechanism of in situ simultaneous formation of metal nanoparticles in stabilizing polymer matrix. J. Nanopart. Res. 5, 497–519 (2003)

    CAS  Google Scholar 

  3. VYu. Musatova, S.A. Semenov, D.V. Drobot, A.S. Pronin, A.D. Pomogailo, G.I. Dzhardimalieva, V.I. Popenko, Synthesis and thermal conversions of unsaturated nickel(II) dicarboxylates as precursors of metallopolymer nanocomposites. Russ. J. Inorg. Chem. 61, 1111–1124 (2016)

    CAS  Google Scholar 

  4. S.A. Semenov, VYu. Musatova, D.V. Drobot, G.I. Dzhardimalieva, Thermal decomposition of unsaturated nickel(II) dicarboxylates. Russ. J. Inorg. Chem. 63, 1217–1224 (2018)

    CAS  Google Scholar 

  5. M. Padmanabhan, J.C. Joseph, A. Thirumurugan, C.N.R. Rao, Maleate–fumarate conversion and other novel aspects of the reaction of a Co(II) maleate with pyridine and bipyridine. Dalton Trans. 21, 2809–2811 (2008)

    Google Scholar 

  6. J.-M. Yang, Z.-H. Zhou, H. Zhang, H.-L. Wan, S.-J. Lu, Temperature effect on the conversions of phthalato and maleato manganese(II) complexes with diamine ligands. Inorg. Chim. Acta 358, 1841–1849 (2005)

    CAS  Google Scholar 

  7. L.I. Yudanova, V.A. Logvinenko, N.F. Yudanov, N.A. Rudina, A.V. Ishchenko, P.P. Semyannikov, L.A. Sheludyakova, N.I. Alferova, Thermolysis of copper(II) salts of maleic acid. Synthesis of metal–polymer composites. Russ. J. Coord. Chem. 39, 415–420 (2013)

    CAS  Google Scholar 

  8. L.I. Yudanova, V.A. Logvinenko, L.A. Sheludyakova, N.F. Yudanov, P.P. Semyannikov, S.I. Kozhemyachenko, I.V. Korolkov, N.A. Rudina, A.V. Ishchenko, Maleates of Mn(II), Fe(II), Co(II), and Ni(II) as precursors for synthesis of metal-polymer composites. Russ. J. Inorg. Chem. 59, 1180–1186 (2014)

    CAS  Google Scholar 

  9. V.A. Logvinenko, L.I. Yudanova, N.F. Yudanov, G.N. Chekhova, Thermal analysis of transition metal salts of carboxylic acids. The way for the synthesis of metal–polymer composites. J. Therm. Anal. Calorim. 74, 395–399 (2003)

    CAS  Google Scholar 

  10. L.I. Yudanova, V.A. Logvinenko, L.A. Sheludyakova, I.V. Korolkov, A.V. Ishchenko, N.A. Rudina, Regularities of thermolysis for the Fe(II), Co(II), and Ni(II) salts of maleic and ortho-phthalic acids with the formation of metal/polymer composites. Russ. J. Coord. Chem. 43, 446–452 (2017)

    CAS  Google Scholar 

  11. A.K. Nikumbh, S.K. Pardeshi, M.N. Raste, A study of the thermal decomposition of copper(II) and zinc(II) malonate, maleate and succinate complexes using direct current electrical conductivity measurements. Thermochim. Acta 374, 115–128 (2001)

    CAS  Google Scholar 

  12. N.-Q. Bui, C. Geantetand, G. Berhault, Activation of regenerated CoMo/Al2O3 hydrotreating catalysts by organic additives—The particular case of maleic acid. Appl. Catal. A 572, 185–196 (2019)

    CAS  Google Scholar 

  13. L.I. Yudanova, V.A. Logvinenko, N.F. Yudanov, N.A. Rudina, A.V. Ishchenko, P.P. Semyannikov, L.A. Sheludyakova, N.I. Alferova, A.I. Romanenko, O.B. Anikeev, Preparation of metal–polymer composites through the thermolysis of Fe(II), Co(II), and Ni(II) maleates. Inorg. Mater. 49, 1055–1060 (2013)

    CAS  Google Scholar 

  14. N.P. Porolo, Z.G. Aliev, G.I. Dzhardimalieva, I.N. Ivleva, I.E. Uflyand, A.D. Pomogailo, N.S. Ovanesyan, Synthesis and reactivity of metal-containing monomers. Synthesis and structure of salts of unsaturated dicarboxylic acids. Russ. Chem. Bull. 46, 362–370 (1997)

    Google Scholar 

  15. L.I. Yudanova, V.A. Logvinenko, L.A. Sheludyakova, N.F. Yudanov, G.N. Chekhova, N.I. Alferova, V.I. Alekseev, P.P. Semyannikov, V.I. Lisoivan, Thermal decomposition of solid solutions in systems of Fe(II), Co(II), and Ni(II) hydrogen maleates with the formation of bimetallic nanoparticles. Russ. J. Inorg. Chem. 53, 1459 (2008)

    Google Scholar 

  16. I.E. Uflyand, G.I. Dzhardimalieva, Nanomaterials Preparation by Thermolysis of Metal Chelates (Springer, Cham, 2018)

    Google Scholar 

  17. S.A. Semenov, VYu. Musatova, D.V. Drobot, G.I. Dzhardimalieva, Quantitative description of properties of nickel-containing nanocomposites affecting their magnetic characteristics. Russ. J. Inorg. Chem. 63, 1424–1426 (2018)

    CAS  Google Scholar 

  18. M. Badea, R. Olar, D. Marinescu, G. Vasile, Some new acrylate complexes as a criterion in their selection for further co-polymerization reaction. J. Therm. Anal. Calorim. 80, 683–685 (2005)

    CAS  Google Scholar 

  19. C.-B. Liu, M.-X. Yu, X.-J. Zheng, L.-P. Jin, S. Gao, S.-Z. Lu, Structural change of supramolecular coordination polymers of itaconic acid and 1,10-phenanthroline along lanthanide series. Inorg. Chim. Acta 358, 2687–2696 (2005)

    CAS  Google Scholar 

  20. G.V. Scaeteanu, M.C. Chifiriuc, C. Bleotu, C. Kamerzan, L. Marutescu, C.G. Daniliuc, C. Maxim, L. Calu, R. Olar, M. Badea, Synthesis, structural characterization, antimicrobial activity, and in vitro biocompatibility of new unsaturated carboxylate complexes with 2,2′-bipyridine. Molecules 23, 157 (2018)

    Google Scholar 

  21. A. Uhrinová, J. Kuchár, A. Orendáčová, M. Pitoňák, J. Federič, J. Noga, J. Černá, [Ni(bpy)(mal)(H2O)3]·H2O and [Ni(4,4′-dmbpy)(mal)(H2O)3]·1.5H2O: syntheses, crystal structures, magnetic properties, and computational study of stacking interactions. J. Coord. Chem. 70, 2999–3018 (2017)

    Google Scholar 

  22. A. Pavlová, J. Černák, K. Harm, Bis(2,2′-bipyridine-k2N,N’)(maleate-k2O1,O1′)nickel(II) 7.34-hydrate. Acta Crystallogr. Sect. E 64, m1536–m1537 (2008)

    Google Scholar 

  23. M. Li, X. Fu, C. Wang, Tri-aqua-(2,2′-bi-pyridine)maleatonickel(II) monohydrate. Acta Crystallogr. Sect. E 62, m865–m866 (2006)

    CAS  Google Scholar 

  24. L. Wiehl, J. Schreuer, E. Haussühl, Crystal structure of triaqua-1,10-phenanthroline-nickel(II) maleate dihydrate, Ni(H2O)3(C12H8N2)(C4H2O4)·2H2O. Z. Kristallogr. - New Cryst. Struct. 223, 82–84 (2008)

    CAS  Google Scholar 

  25. Y.-Q. Zheng, J.-L. Lin, Z.-P. Kong, B.-Y. Chen, Self-assemblies of Ni(II) with phenanthroline and maleate anions: [Ni(H2O)3(phen)L].H2O (1) and [Ni(H2O)2(phen)L].2H2O (2) with H2L = maleic acid. J. Chem. Crystallogr. 32, 399–408 (2002)

    CAS  Google Scholar 

  26. I.E. Uflyand, V.A. Zhinzhilo, L.S. Lapshina, A.A. Novikova, V.E. Burlakova, G.I. Dzhardimalieva, Conjugated thermolysis of metal chelate monomers based on cobalt acrylate complexes with polypyridyl ligands and tribological performance of nanomaterials obtained. ChemistrySelect 3, 8998–9007 (2018)

    CAS  Google Scholar 

  27. H.-H. Zou, L. Wang, Z.-X. Long, Q.-P. Qin, Z.-K. Song, T. Xie, S.-H. Zhang, Y.-C. Liu, B. Lin, Z.-F. Chen, Preparation of 4-([2,2′:6′,2″-terpyridin]-4′-yl)-N, N-diethylaniline NiII and PtII complexes and exploration of their in vitro cytotoxic activities. Eur. J. Med. Chem. 108, 1–12 (2016)

    CAS  PubMed  Google Scholar 

  28. E.C. Constable, J. Lewis, M.C. Liptrot, P.R. Raithby, The coordination chemistry of 4′-phenyl-2,2′:6′,2″-terpyridine; the synthesis, crystal and molecular structures of 4′-phenyl-2,2′:6′,2″-terpyridine and bis(4′-phenyl-2,2′:6′,2″-terpyridine)nickel(II) chloride decahydrate. Inorg. Chim. Acta 178, 47–54 (1990)

    CAS  Google Scholar 

  29. W.-W. Fu, Y.-Q. Li, Y. Liu, M.-S. Chen, W. Li, Y.-Q. Yang, An infinite two-dimensional hybrid water–chloride network in a 4′-(furan-2-yl)-2,2′:6′,2′′-terpyridine nickel(II) matrix. Acta Cryst. E 73, 871–875 (2017)

    CAS  Google Scholar 

  30. W.-W. Fu, D.-Z. Kuang, F.-X. Zhang, Y. Liu, W. Li, Y.-F. Kuang, Synthesis, crystal structure and properties of the nickel(II) 4′-(p-methoxy1pheny1)-2, 2′:6′,2″-terpyridine complex. Chin. J. Inorg. Chem. 29, 654–658 (2013)

    CAS  Google Scholar 

  31. J. McMurtrie, I. Dance, Crystal packing in metal complexes of 4′-phenylterpyridine and related ligands: occurrence of the 2D and 1D terpy embrace arrays. CrystEngComm 11, 1141–1149 (2009)

    CAS  Google Scholar 

  32. W.-W. Fu, X. Shu, Y.-L. Luo, Z.-Q. Tang, Q. Li, H.-J. Liu, Q.-W. Cheng, H.-Y. Wang, Y. Liu, New Co(II) and Mn(II) complexes with 4′-substituted 2,2′:6′,2″-terpyridine ligands. J. Struct. Chem. 59, 398–410 (2018)

    CAS  Google Scholar 

  33. Y.H. Lee, E. Kubota, A. Fuyuhiro, S. Kawata, J.M. Harrowfield, Y. Kim, S. Hayami, Synthesis, structure and luminescence properties of Cu(II), Zn(II) and Cd(II) complexes with 4′-terphenylterpyridine. Dalton Trans. 41, 10825–10831 (2012)

    CAS  PubMed  Google Scholar 

  34. B.N. Ghosh, F. Topić, P.K. Sahoo, P. Mal, J. Linnera, E. Kalenius, H.M. Tuononen, K. Rissanen, Synthesis, structure and photophysical properties of a highly luminescent terpyridine-diphenylacetylene hybrid fluorophore and its metal complexes. Dalton Trans. 44, 254–267 (2015)

    CAS  PubMed  Google Scholar 

  35. S. Naik, S. Kumar, J.T. Mague, M.S. Balakrishna, A hybrid terpyridine-based bis(diphenylphosphino)amine ligand, terpy-C6H4N(PPh2)2: synthesis, coordination chemistry and photoluminescence studies. Dalton Trans. 45, 18434–18437 (2016)

    CAS  PubMed  Google Scholar 

  36. W.-W. Fu, F.-X. Zhang, D.-Z. Kuang, Y. Liu, Y.-Q. Yang, Syntheses, crystal structures and luminescence of zinc(II) and cadmium(II) complexes with 4′-substituted 2,2′:6′,2″-terpyridines. J. Coord. Chem. 68, 1177–1188 (2015)

    CAS  Google Scholar 

  37. W.-W. Fu, Q. Huang, S.T. Liu, W.J. Wu, J.R. Shen, S.H. Li, Syntheses, crystal structures, and luminescence properties of Co(II), Ni(II) and Zn(II) complexes with 4′-(4-(Imidazol-1-Yl)phenyl)-2,2′:6′,2″-terpyridine. Russ. J. Coord. Chem. 43, 670–678 (2017)

    CAS  Google Scholar 

  38. Y. Komatsu, K. Kato, Y. Yamamoto, H. Kamihata, Y.H. Lee, A. Fuyuhiro, S. Kawata, Spin-crossover behaviors based on intermolecular interactions for cobalt(II) complexes with long alkyl chains. Eur. J. Inorg. Chem. 2012, 2769–2775 (2012)

    CAS  Google Scholar 

  39. Y. Zhang, K.L.M. Harriman, G. Brunet, A. Pialat, B. Gabidullin, M. Murugesu, Reversible redox, spin crossover, and superexchange coupling in 3d transition-metal complexes of bis-azinyl analogues of 2,2′:6′,2′′-terpyridine. Eur. J. Inorg. Chem. 2018, 1212–1223 (2018)

    CAS  Google Scholar 

  40. M. Nakaya, R. Ohtani, J.W. Shin, M. Nakamura, L.F. Lindoy, S. Hayami, Abrupt spin transition in a modified-terpyridine cobalt(II) complex with a highly-distorted [CoN6] core. Dalton Trans. 47, 13809–13814 (2018)

    CAS  PubMed  Google Scholar 

  41. W.W. Fu, M.S. Chen, W. Li, Y. Liu, F.X. Zhang, D.Z. Kuang, Hydrothermal syntheses, crystal structures, and magnetic properties of three manganese(II) complexes based on 4′-substituted 2,2′:6′,2″-terpyridine ligands. Russ. J. Coord. Chem. 41, 247–254 (2015)

    CAS  Google Scholar 

  42. V.D. Singh, R.S. Singh, R.P. Paitandi, B.K. Dwivedi, B. Maiti, D.S. Pandey, Solvent-dependent self-assembly and aggregation-induced emission in Zn(II) complexes containing phenothiazine-based terpyridine ligand and its efficacy in pyrophosphate sensing. J. Phys. Chem. C 122, 5178–5187 (2018)

    CAS  Google Scholar 

  43. A. Sil, A. Maity, D. Giri, S.K. Patra, A phenylene–vinylene terpyridine conjugate fluorescent probe for distinguishing Cd2+ from Zn2+ with high sensitivity and selectivity. Sens. Actuators B 226, 403–411 (2016)

    CAS  Google Scholar 

  44. K. Czerwińska, B. Machura, S. Kula, S. Krompiec, K. Erfurt, C. Roma-Rodrigues, A.R. Fernandes, L.S. Shulpina, N.S. Ikonnikov, G.B. Shulpin, Copper(II) complexes of functionalized 2,2′:6′,2″-terpyridines and 2,6-di(thiazol-2-yl)pyridine: structure, spectroscopy, cytotoxicity and catalytic activity. Dalton Trans. 46, 9591–9604 (2017)

    PubMed  Google Scholar 

  45. Z. Ma, L. Wei, E.C.B.A. Alegria, L.M.D.R.S. Martins, M.F.C. Guedes, A.J.L. Pombeiro, Synthesis and characterization of copper(II) 4′-phenyl-terpyridine compounds and catalytic application for aerobic oxidation of benzylic alcohols. Dalton Trans. 43, 4048–4058 (2014)

    CAS  PubMed  Google Scholar 

  46. Y.H. Budnikova, D.A. Vicic, A. Klein, Exploring mechanisms in Ni terpyridine catalyzed C–C cross-coupling reactions—a review. Inorganics 6, 18 (2018)

    Google Scholar 

  47. D. Zych, A. Slodek, M. Matussek, M. Filapek, G. Szafraniec-Gorol, S. Krompiec, S. Kotowicz, M. Siwy, E. Schab-Balcerzak, K. Bednarczyk, M. Libera, K. Smolarek, S. Maćkowski, W. Danikiewicz, Highly luminescent 4′-(4-ethynylphenyl)-2,2′:6′,2″-terpyridine derivatives as materials for potential applications in organic light emitting diodes. ChemistrySelect 2, 8221–8233 (2017)

    CAS  Google Scholar 

  48. A. Sil, S.R. Chowdhury, S. Mishra, S.K. Patra, Synthesis, structure, and photophysical and electrochemical properties of Ru(II) complexes of arylene–vinylene terpyridyl conjugates. Dalton Trans. 47, 9877–9888 (2018)

    CAS  PubMed  Google Scholar 

  49. U.S. Schubert, H. Hofmeier, G.R. Newkome, Modern Terpyridine Chemistry (Wiley, Weinheim, 2006)

    Google Scholar 

  50. Y.-W. Zhong, C.-J. Yao, H.-J. Nie, Electropolymerized films of vinyl-substituted polypyridine complexes: synthesis, characterization, and applications. Coord. Chem. Rev. 257, 1357–1372 (2013)

    CAS  Google Scholar 

  51. G.I. Dzhardimalieva, I.E. Uflyand, Review: recent advances in the chemistry of metal chelate monomers. J. Coord. Chem. 70, 1468–1527 (2017)

    CAS  Google Scholar 

  52. G.I. Dzhardimalieva, I.E. Uflyand, Metal chelate monomers as precursors of polymeric materials. J. Inorg. Organomet. Polym Mater. 26, 1112–1173 (2016)

    CAS  Google Scholar 

  53. G.I. Dzhardimalieva, I.E. Uflyand, Chemistry of Polymeric Metal Chelates (Springer, Cham, 2018)

    Google Scholar 

  54. M. Wałęsa-Chorab, A.R. Stefankiewicz, A. Gorczyński, M. Kubicki, J. Kłak, M.J. Korabik, V. Patroniak, Structural, spectroscopic and magnetic properties of new copper(II) complexes with a terpyridine ligand. Polyhedron 30, 233–240 (2011)

    Google Scholar 

  55. M. Wałęsa-Chorab, A.R. Stefankiewicz, D. Ciesielski, Z. Hnatejko, M. Kubicki, J. Kłak, M.J. Korabik, V. Patroniak, New mononuclear manganese(II) and zinc(II) complexes with a terpyridine ligand: structural, magnetic and spectroscopic properties. Polyhedron 30, 730–737 (2011)

    Google Scholar 

  56. A. Gorczyński, M. Wałęsa-Chorab, M. Kubicki, M. Korabik, V. Patroniak, New complexes of 6,6″-dimethyl-2,2′:6′,2″-terpyridine with Ni(II) ions: synthesis, structure and magnetic properties. Polyhedron 77, 17–23 (2014)

    Google Scholar 

  57. W.-W. Fu, J.-R. Shen, Z.-Q. Tang, Y.-Q. Peng, Q. Yi, Synthesis, crystal structure and magnetic property of a Ni(II) complex with 4′-(4-methoxyphenyl)-2,2′:6′,2″-terpyridine. Inorg. Nano-Met. Chem. 47, 1664–1667 (2017)

    CAS  Google Scholar 

  58. C.-P. Zhang, H. Wang, A. Klein, C. Biewer, K. Stirnat, Y. Yamaguchi, L. Xu, V. Gomez-Benitez, D.A. Vicic, A five-coordinate nickel(II) fluoroalkyl complex as a precursor to a spectroscopically detectable Ni(III) species. J. Am. Chem. Soc. 135, 8141–8144 (2013)

    CAS  PubMed  Google Scholar 

  59. E.C. Constable, D. Phillips, P.R. Raithby, Nickel(II) chloride adducts of 4-phenyl-2,2:6,2″-terpyridine. Inorg. Chem. Commun. 5, 519–521 (2002)

    CAS  Google Scholar 

  60. A.W. Addison, T.N. Rao, J. Reedijk, J. Van Rijn, G.C. Verschoor, Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 7, 1349–1356 (1984)

    Google Scholar 

  61. Y.T. Jeon, J.Y. Moon, G.H. Lee, J. Park, Y. Chang, Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles. J. Phys. Chem. B 110, 1187–1191 (2006)

    CAS  PubMed  Google Scholar 

  62. A.D. Pomogailo, G.I. Dzhardimalieva, Controlled thermolysis of macromolecule-metal complexes as a way for synthesis of nanocomposites. Macromol. Symp. 317–318, 198–205 (2012)

    Google Scholar 

  63. R.G. Chaudhuri, S. Paria, Core/shell nanoparticles. Chem. Rev. 112, 2373–2433 (2012)

    Google Scholar 

  64. G.M. Sheldrick, SADABS. Program for Scanning and Correction of Area Detector Data (University of Göttingen, Germany, 2004)

  65. G.M. Sheldrick, SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 71, 3–8 (2015)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Kyrill Y. Suponitsky (A.N. Nesmeyanov Institute of Organoelement Compounds, Moscow) for X-ray study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor E. Uflyand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uflyand, I.E., Zhinzhilo, V.A. & Dzhardimalieva, G.I. Coordination Polymer Based on Nickel(II) Maleate and 4′-Phenyl-2,2′:6′,2″-Terpyridine: Synthesis, Crystal Structure and Conjugated Thermolysis. J Inorg Organomet Polym 30, 965–975 (2020). https://doi.org/10.1007/s10904-019-01227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01227-8

Keywords

Navigation