Skip to main content
Log in

Thermodynamic and Kinetic Studies of Removal Process of Hexavalent Chromium Ions from Water by Using Bio-conducting Starch–Montmorillonite/Polyaniline Nanocomposite

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, starch–montmorillonite/polyaniline (St–Mt/PANI) nanocomposite was prepared by in situ polymerization of aniline on the surface of starch–montmorillonite (St–Mt) nanocomposite and was applied for adsorption and removal of Cr(VI) ions from aqueous solution in batch mode. Various characterization techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were utilized to characterize and evaluate the prepared nanocomposite. In order to verify the optimum conditions for adsorption of Cr(VI) ions by St–Mt nanocomposite, as powder, different parameters affecting the adsorption efficiency including pH of the solution, the initial concentration of Cr(VI) ions, contact time and adsorbent dosage were investigated. According to the results, the best conditions for Cr(VI) removal was obtained as pH 2, C0 = 10 mg L−1, time = 15 min and M = 0.05 g. The adsorption process was well fitted by Langmuir isotherm model and the maximum adsorption capacity was calculated as 208.33 mg g−1. Also, the kinetic adsorption process was well described by the pseudo-second-order kinetic model. The study of thermodynamic parameters confirmed the spontaneous and exothermic nature of adsorption and removal process. Desorption tests revealed the reusability of St–Mt/PANI nanocomposite for three adsorption cycles and so the method is almost cost efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Yang, M. Yu, W. Chen, Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: kinetics, equilibrium and thermodynamics. J. Ind. Eng. Chem. 21, 414–422 (2015)

    CAS  Google Scholar 

  2. A. Maleki, B. Hayati, M. Naghizadeh, S.W. Joo, Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution. J. Ind. Eng. Chem. 28, 211–216 (2015)

    CAS  Google Scholar 

  3. S.I. Rathnayake, W.N. Martens, Y. Xi, R.L. Frost, G.A. Ayoko, Remediation of Cr(VI) by inorganic-organic clay. J. Colloid Interface Sci. 490, 163–173 (2017)

    CAS  PubMed  Google Scholar 

  4. S. Rengaraj, K.-H. Yeon, S.-H. Moon, Removal of chromium from water and wastewater by ion exchange resins. J. Hazard. Mater. 87, 273–287 (2001)

    CAS  PubMed  Google Scholar 

  5. G. Wang, Y. Hua, X. Su, S. Komarneni, S. Ma, Y. Wang, Cr (VI) adsorption by montmorillonite nanocomposites. Appl. Clay Sci. 124, 111–118 (2016)

    Google Scholar 

  6. A. Çimen, F. Kılıçel, G. Arslan, Removal of chromium ions from waste waters using reverse osmosis AG and SWHR membranes. Russ. J. Phys. Chem. A 88, 845–850 (2014)

    Google Scholar 

  7. L. Alidokht, A. Khataee, A. Reyhanitabar, S. Oustan, Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution. Desalination 270, 105–110 (2011)

    CAS  Google Scholar 

  8. X. Liu, W. Zhou, X. Qian, J. Shen, X. An, Polyaniline/cellulose fiber composite prepared using persulfate as oxidant for Cr(VI)-detoxification. Carbohydr. Polym. 92, 659–661 (2013)

    CAS  PubMed  Google Scholar 

  9. Y. Kong, J. Wei, Z. Wang, T. Sun, C. Yao, Z. Chen, Heavy metals removal from solution by polyaniline/palygorskite composite. J. Appl. Polym. Sci. 122, 2054–2059 (2011)

    CAS  Google Scholar 

  10. R. Karthik, S. Meenakshi, Removal of hexavalent chromium ions using polyaniline/silica gel composite. J. Water Process Eng. 1, 37–45 (2014)

    Google Scholar 

  11. A. Olad, R. Nabavi, Application of polyaniline for the reduction of toxic Cr(VI) in water. J. Hazard. Mater. 147, 845–851 (2007)

    CAS  PubMed  Google Scholar 

  12. B.S. Kadu, Y.D. Sathe, A.B. Ingle, R.C. Chikate, K.R. Patil, C.V. Rode, Efficiency and recycling capability of montmorillonite supported Fe–Ni bimetallic nanocomposites towards hexavalent chromium remediation. Appl. Catal. B 104, 407–414 (2011)

    CAS  Google Scholar 

  13. S.-L. Bee, M. Abdullah, S.-T. Bee, L.T. Sin, A. Rahmat, Polymer nanocomposites based on silylated-montmorillonite: a review. Prog. Polym. Sci. 85, 57–82 (2018)

    CAS  Google Scholar 

  14. L. Ai, L. Li, Efficient removal of organic dyes from aqueous solution with ecofriendly biomass-derived carbon@ montmorillonite nanocomposites by one-step hydrothermal process. Chem. Eng. J. 223, 688–695 (2013)

    CAS  Google Scholar 

  15. N. Ghaemi, S.S. Madaeni, A. Alizadeh, H. Rajabi, P. Daraei, Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides. J. Membr. Sci. 382, 135–147 (2011)

    CAS  Google Scholar 

  16. M. Witczak, R. Ziobro, L. Juszczak, J. Korus, Starch and starch derivatives in gluten-free systems—a review. J. Cereal Sci. 67, 46–57 (2016)

    CAS  Google Scholar 

  17. A. Olad, F.F. Azhar, M. Shargh, S. Jharfi, Application of response surface methodology for modeling of reactive dye removal from solution using starch-montmorillonite/polyaniline nanocomposite. Polym. Eng. Sci. 54, 1595–1607 (2014)

    CAS  Google Scholar 

  18. P. Ren, T. Shen, F. Wang, X. Wang, Z. Zhang, Study on biodegradable starch/OMMT nanocomposites for packaging applications. J. Polym. Environ. 17, 203 (2009)

    CAS  Google Scholar 

  19. H. Almasi, B. Ghanbarzadeh, A.A. Entezami, Physicochemical properties of starch–CMC–nanoclay biodegradable films. Int. J. Biol. Macromol. 46, 1–5 (2010)

    CAS  PubMed  Google Scholar 

  20. F. Chivrac, E. Pollet, P. Dole, L. Avérous, Starch-based nano-biocomposites: plasticizer impact on the montmorillonite exfoliation process. Carbohydr. Polym. 79, 941–947 (2010)

    CAS  Google Scholar 

  21. R. Karthik, S. Meenakshi, Synthesis, characterization and Cr(VI) uptake study of polyaniline coated chitin. Int. J. Biol. Macromol. 72, 235–242 (2015)

    CAS  PubMed  Google Scholar 

  22. R. Karthik, S. Meenakshi, Removal of Cr(VI) ions by adsorption onto sodium alginate-polyaniline nanofibers. Int. J. Biol. Macromol. 72, 711–717 (2015)

    CAS  PubMed  Google Scholar 

  23. B. Qiu, C. Xu, D. Sun, H. Yi, J. Guo, X. Zhang, H. Qu, M. Guerrero, X. Wang, N. Noel, Polyaniline coated ethyl cellulose with improved hexavalent chromium removal. ACS Sustain. Chem. Eng. 2, 2070–2080 (2014)

    CAS  Google Scholar 

  24. L. Chuecas, J. Riley, The spectrophotometric determination of chromium in sea water. Anal. Chim. Acta 35, 240–246 (1966)

    CAS  Google Scholar 

  25. C. Dispenza, C.L. Presti, C. Belfiore, G. Spadaro, S. Piazza, Electrically conductive hydrogel composites made of polyaniline nanoparticles and poly (N-vinyl-2-pyrrolidone). Polymer 47, 961–971 (2006)

    CAS  Google Scholar 

  26. A. Olad, B. Naseri, Preparation, characterization and anticorrosive properties of a novel polyaniline/clinoptilolite nanocomposite. Prog. Org. Coat. 67, 233–238 (2010)

    CAS  Google Scholar 

  27. H. Liu, D. Chaudhary, S.-I. Yusa, M.O. Tadé, Glycerol/starch/Na + -montmorillonite nanocomposites: a XRD, FTIR, DSC and 1 H NMR study. Carbohydr. Polym. 83, 1591–1597 (2011)

    CAS  Google Scholar 

  28. H. Namazi, A. Dadkhah, M. Mosadegh, New biopolymer nanocomposite of starch-graft polystyrene/montmorillonite clay prepared through emulsion polymerization method. J. Polym. Environ. 20, 794–800 (2012)

    CAS  Google Scholar 

  29. V. Janaki, K. Vijayaraghavan, B.-T. Oh, K.-J. Lee, K. Muthuchelian, A. Ramasamy, S. Kamala-Kannan, Starch/polyaniline nanocomposite for enhanced removal of reactive dyes from synthetic effluent. Carbohydr. Polym. 90, 1437–1444 (2012)

    CAS  PubMed  Google Scholar 

  30. D. Chaudhuri, D. Sarma, BF 3-doped polyaniline: a novel conducting polymer. Pramana 67, 135–139 (2006)

    CAS  Google Scholar 

  31. H.X. Huang, K.K. Yang, Y.Z. Wang, X.L. Wang, J. Li, Synthesis, characterization, and thermal properties of a novel pentaerythritol-initiated star-shaped poly (p-dioxanone). J. Polym. Sci., Part A: Polym. Chem. 44, 1245–1251 (2006)

    CAS  Google Scholar 

  32. A.G. Yavuz, E. Dincturk-Atalay, A. Uygun, F. Gode, E. Aslan, A comparison study of adsorption of Cr(VI) from aqueous solutions onto alkyl-substituted polyaniline/chitosan composites. Desalination 279, 325–331 (2011)

    CAS  Google Scholar 

  33. P. Müller, É. Kapin, E. Fekete, Effects of preparation methods on the structure and mechanical properties of wet conditioned starch/montmorillonite nanocomposite films. Carbohydr. Polym. 113, 569–576 (2014)

    PubMed  Google Scholar 

  34. T.-T. Tee, L.T. Sin, R. Gobinath, S.-T. Bee, D. Hui, A. Rahmat, Q. Fang, Investigation of nano-size montmorillonite on enhancing polyvinyl alcohol–starch blends prepared via solution cast approach. Compos. B Eng. 47, 238–247 (2013)

    CAS  Google Scholar 

  35. S. Baral, N. Das, G.R. Chaudhury, S. Das, A preliminary study on the adsorptive removal of Cr(VI) using seaweed, Hydrilla verticillata. J. Hazard. Mater. 171, 358–369 (2009)

    CAS  PubMed  Google Scholar 

  36. K.Z. Elwakeel, Removal of Cr(VI) from alkaline aqueous solutions using chemically modified magnetic chitosan resins. Desalination 250, 105–112 (2010)

    CAS  Google Scholar 

  37. V. Uskoković, Composites comprising cholesterol and carboxymethyl cellulose. Colloids Surf. B 61, 250–261 (2008)

    Google Scholar 

  38. A. Rashidzadeh, A. Olad, Novel polyaniline/poly (vinyl alcohol)/clinoptilolite nanocomposite: dye removal, kinetic, and isotherm studies. Desalination Water Treat. 51, 7057–7066 (2013)

    CAS  Google Scholar 

  39. M.R. Samani, S.M. Borghei, A. Olad, M.J. Chaichi, Removal of chromium from aqueous solution using polyaniline–poly ethylene glycol composite. J. Hazard. Mater. 184, 248–254 (2010)

    CAS  PubMed  Google Scholar 

  40. M. Akram, H.N. Bhatti, M. Iqbal, S. Noreen, S. Sadaf, Biocomposite efficiency for Cr (VI) adsorption: kinetic, equilibrium and thermodynamics studies. J. Environ. Chem. Eng. 5, 400–411 (2017)

    CAS  Google Scholar 

  41. T.A. Saleh, A.M. Muhammad, S.A. Ali, Synthesis of hydrophobic cross-linked polyzwitterionic acid for simultaneous sorption of Eriochrome black T and chromium ions from binary hazardous waters. J. Colloid Interface Sci. 468, 324–333 (2016)

    CAS  PubMed  Google Scholar 

  42. R. Karthik, S. Meenakshi, Facile synthesis of cross linked-chitosan–grafted-polyaniline composite and its Cr(VI) uptake studies. Int. J. Biol. Macromol. 67, 210–219 (2014)

    CAS  PubMed  Google Scholar 

  43. V. Janaki, M.-N. Shin, S.-H. Kim, K.-J. Lee, M. Cho, A. Ramasamy, B.-T. Oh, S. Kamala-Kannan, Application of polyaniline/bacterial extracellular polysaccharide nanocomposite for removal and detoxification of Cr(VI). Cellulose 21, 463–472 (2014)

    CAS  Google Scholar 

  44. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    CAS  Google Scholar 

  45. P.A. Kumar, S. Chakraborty, M. Ray, Removal and recovery of chromium from wastewater using short chain polyaniline synthesized on jute fiber. Chem. Eng. J. 141, 130–140 (2008)

    CAS  Google Scholar 

  46. R. Foroutan, R. Mohammadi, B. Ramavandi, M. Bastanian, Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon. Korean J. Chem. Eng. 35, 2207–2219 (2018)

    CAS  Google Scholar 

  47. Y. Zheng, W. Wang, D. Huang, A. Wang, Kapok fiber oriented-polyaniline nanofibers for efficient Cr(VI) removal. Chem. Eng. J. 191, 154–161 (2012)

    CAS  Google Scholar 

  48. R. Nithya, T. Gomathi, P. Sudha, J. Venkatesan, S. Anil, S.-K. Kim, Removal of Cr(VI) from aqueous solution using chitosan-g-poly (butyl acrylate)/silica gel nanocomposite. Int. J. Biol. Macromol. 87, 545–554 (2016)

    CAS  PubMed  Google Scholar 

  49. E.M. Kalhori, K. Yetilmezsoy, N. Uygur, M. Zarrabi, R.M.A. Shmeis, Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA). Appl. Surf. Sci. 287, 428–442 (2013)

    CAS  Google Scholar 

  50. A. Olad, F. Farshi Azhar, A study on the adsorption of chromium (VI) from aqueous solutions on the alginate-montmorillonite/polyaniline nanocomposite. Desalination and Water Treat. 52, 2548–2559 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support of this research by the University of Tabriz is gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Olad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olad, A., Bastanian, M. & Bakht Khosh Hagh, H. Thermodynamic and Kinetic Studies of Removal Process of Hexavalent Chromium Ions from Water by Using Bio-conducting Starch–Montmorillonite/Polyaniline Nanocomposite. J Inorg Organomet Polym 29, 1916–1926 (2019). https://doi.org/10.1007/s10904-019-01152-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01152-w

Keywords

Navigation