Skip to main content
Log in

Phyto-assisted Preparation of Ag and Ag–CuO Nanoparticles Using Aqueous Extracts of Mimosa pigra and their Catalytic Activities in the Degradation of Some Common Pollutants

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Biosynthesis of Ag and Ag–CuO nanoparticles using aqueous leaf extracts of Mimosa pigra is presented in this study. The nanoparticles were synthesised using different concentration ratios of aqueous leaf extract of Mimosa pigra to the silver and copper salts. The synthesized nanoparticles were characterised using UV–vis spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, Powder X-ray diffraction (PXRD), Scanning and Transmission electron microscopies. Stable nanoparticles with average particle size of 17.5 nm (Ag) and 49.5 nm (Ag–CuO), which were capped by the plant extracts via the O–H and C=O groups from flavonoids, tannins and other biocompounds were obtained. The UV–vis spectra revealed earlier formation of surface plasmon bands for silver nanoparticles when the volume of extract was reduced, although with lower intensity. In the spectrum of Ag–CuO nanoparticles, broad bands around 400–500 nm appeared (with miniature humps) in the region of 365–369 nm. Crystallite size of approximately 50 nm for the Ag–CuO was calculated from XRD results using Schererr’s equation and the particles were well dispersed as shown by the TEM images. The photocatalytic activities of the synthesized Ag and Ag–CuO nanoparticles were studied towards the degradation of methylene blue (MB) and hydrogen peroxide (H2O2). The results showed some promising effect on deactivation of these wastewater pollutants and provide green and eco-friendly reaction toward environmental remediation from common pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Ajitha, Y.A.K. Redd, P.S. Reddy, Spectrochim. Acta 128, 262 (2014)

    Article  Google Scholar 

  2. N. Durán, P.D. Marcato, G.I. De Souza, O.L. Alves, E. Esposito J Biomed Nanotechnol 3, 208 (2007)

    Google Scholar 

  3. B. Zheng, T. Kong, X. Jing, T. Odoom-Wubah, X. Li, D. Sun, F. Lu, Y. Zheng, Q. Li J Col Interf Sci 396, 145 (2013)

    Google Scholar 

  4. E.K. Elumalai, T.N. Prasad, N.P. Kambala, E. David, Arch Appl Sci Res. 2, 81 (2010)

    Google Scholar 

  5. A.K. Mittal, Y. Chisti, U.C. Banerjee, Biotechnol. Adv. 31, 356 (2013)

    Article  Google Scholar 

  6. A.K. Mittal, A. Kaler, U.C. Banerjee, Nano Biomed Eng 4, 124 (2012)

    Article  Google Scholar 

  7. N. Khatoon, R. Ahmad, M. Sardar, Biochem. Eng. J. 102, 97 (2015)

    Article  Google Scholar 

  8. A.K. Mittal, J. Bhaumik, S. Kumar, U.C. Banerjee, J Col Interf Sci. 415, 47 (2014)

    Article  Google Scholar 

  9. N.N. Bonnia, M. S. Kamaruddin, M.H. Nawawi, S. Ratim, H.N. Azlina, E.S. Ali Procedia Chem. 19, 602 (2016)

  10. S. Raja, V. Ramesh, V. Thivaharan, Arabian J Chem. 10, 261 (2017)

    Article  Google Scholar 

  11. A.K. Mittal, D. Tripathy, A. Choudhary, P.K. Aili, A. Chatterjee, I. P. Singh, U. C. Banerjee Mater Sci Eng C. 53, 127(2015)

  12. K. Selvam, C. Sudhakar, M. Govarthanan, P. Thiyagarajan, A. Sengottaiyan, B. Senthilkumar, T. Selvankumar, J Radiation Res Appl Sci. 10, 12 (2016)

    Google Scholar 

  13. J. Balavijayalakshmi, V. Ramalakshmi J Appl Res Tech. 15,422 (2017)

  14. S. Iravani, Green Chem. 13, 2650 (2011)

    Article  Google Scholar 

  15. Y. Zhou, W. Lin, J. Huang, W. Wang, Y. Gao, L. Lin, Q. Li, L. Lin, M. Du, Nanoscale Res. Lett. 5, 1359 (2010)

    Google Scholar 

  16. J. Huang, G. Zhan, B. Zheng, D. Sun, F. Lu, Y. Lin, H. Chen, Z. Zheng, Y. Zheng, Q. Li, Ind. Eng. Chem. Res. 50, 9106 (2011)

    Google Scholar 

  17. V.C. Mbatchou, A.J. Ayebila, O.B. Apea, J Animal Plant Sci. 10, 1258 (2011)

    Google Scholar 

  18. P.W. Grosvenor, P.K. Gothardd, N.C. McWilliams, A. Supriomo, D.O. Gray, J Ethnopharmacology 45, 95 (1995)

    Google Scholar 

  19. F.R. Irvine, Mody plants of Ghana with special reference to their uses (Oxford University Press, London, 1961)

    Google Scholar 

  20. Y. Alkali, A.K. Gana, A. Abdulkadir, H.C. Nzelibe, J Acute Disease 4, 31 (2015)

    Article  Google Scholar 

  21. X. Zhao, P. Wang, Z. Yan, N. Ren, Chem. Phys. Lett. 609, 64 (2014)

    Article  Google Scholar 

  22. L. Wang, Q. Zhou, G. Zhang, Y. Liang, B. Wang, W. Zhang, B. Lei, W. Wang, Mat Lett. 74, 219 (2012)

    Google Scholar 

  23. W. Wang, Z.Y. Feng, W. Jiang, J.H. Zhan, CrystEngComm 15, 1344 (2013)

    Google Scholar 

  24. J. Yang, Z. Li, W. Zhao, C. Zhao, Y. Wang, X. Liu, Mat Lett. 120, 19 (2014)

    Google Scholar 

  25. Y.L. Yu, Y.Y. Zhao, H.Y. Sun, Mat Lett. 108, 45 (2013)

    Google Scholar 

  26. S. Chandran, V. Ravichandran, S. Chandran, J. Chemmanda, B. Chandarshekar J Appl Res Technol. 14, 324 (2016)

    Google Scholar 

  27. E.E. Elemike, D.C. Onwudiwe, Z. Mkhize, Mat Lett. 185, 455 (2016)

    Article  Google Scholar 

  28. K. Roy, C.K. Sarkar, C.K. Ghosh, Appl Nanosci. 5, 959 (2015)

    Google Scholar 

  29. A.J. Joseph, K. Madgula, R. Kakkar, Current World Env. 6, 130 (2011)

    Google Scholar 

  30. W. He, Y.T. Zhou, W.G. Wamer, X. Hu, X. Wu, Z. Zheng, M.D. Boudreau, J. Yin Biomaterials 34, 773 (2013)

    Google Scholar 

  31. W.W. He, H. Jia, X. Li, Y. Lei, J. Li, H. Zhao, Nanoscale 4, 3506 (2012)

    Google Scholar 

  32. Z. Dai, S. Liu, J. Bao, H. Ju, Chem European J. 15, 4326 (2009)

    Article  Google Scholar 

  33. W.W. He, X. Wu, J. Liu, X. Hu, K. Zhang, S. Hou, Chem Materials 22, 2994 (2010)

    Google Scholar 

  34. A. Bhattacharjee, M. Ahmaruzzaman, RSC Adv. 6, 41363 (2016)

    Google Scholar 

  35. A.D. Paola, V. Augugliaro, L. Palmisano, G. Pantaleo, E. Savinov J. Photochem. Photobiol. 155A, 214 (2003)

    Google Scholar 

  36. V.O. Amendola, M. Bakr, F. Stellacci, Plasmonics 5, 97 (2010)

    Article  Google Scholar 

  37. S. Pal, Y.K. Tak, J.M. Song, Appl Env Microbiol. 73, 1720 (2007)

    Article  Google Scholar 

  38. S.U. Ganaie, T. Abbasi, S.A. Abbasi, Particulate. Sci. Technol. 33, 644 (2015)

    Google Scholar 

  39. S. Muthukrishnan, S. Bhakya, T.S. Kumar, M.V. Rao Ind Crops Prods 63,124 (2015)

  40. X. Liu, Z. Li, C. Zhao, W. Zhao, J. Yang, Y. Wang, F. Li J Col Interf Sci. 419, 16 (2014)

    Google Scholar 

  41. L.J. Tomar, R.K. Desai, B.S. Chakrabarty, AIP Conf. Proc. 1536, 245 (2013)

    Article  CAS  Google Scholar 

  42. P. Chen, X. Xu, C. Koenigsmann, A.C. Santulli, S.S. Wong, J.L. Musfeldt, Nano Lett. 10, 4532 (2010)

    Google Scholar 

  43. T.H. Tran, V.T. Nguyen, Int Scholarly Res Notices, 1-14 (2014)

  44. S.S. Chang, H.J. Lee, H.J. Park, Ceramics Int. 31, 415 (2005)

    Google Scholar 

  45. K. Mageshwari, R. Sathyamoorthy, J. Mater. Sci. Technol. 29, 914 (2013)

    Article  Google Scholar 

  46. D. Wu, Q. Zhang, M. Tao, Phys. Rev. 73B, 1–10 (2006)

    Google Scholar 

  47. Y.K. Jeong, G.M. Choi, J Phy Chem Solids 57, 84 (1996)

    Article  Google Scholar 

  48. V. Sreenivasulu, N.S. Kumar, M. Suguna, M. Asif, E.H. Al-Ghurabi, Z.X. Huang, Z. Zhen, Int. J. Electrochem. Sci. 11, 9971 (2016)

    Google Scholar 

  49. K. Shameli, M.B. Ahmad, M. Zargar, W.M. Yunus, A. Rustaiyan, N.A. Ibrahim, Int. J. Nanomed. 6, 590 (2011)

    Google Scholar 

  50. S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, J Col Interf Sci. 275, 502 (2004)

    Article  Google Scholar 

  51. J.R. Morones, L.J. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez Nanotechnol. 16, 2353 (2005)

  52. V.K. Vidhu, D. Philip, Micron 56, 62 (2013)

    Google Scholar 

  53. M.S. Jadhav, S. Kulkarni, P. Raikar, D.A. Barretto, S.K. Vootlac, U.S. Raikar, New J Chem (2017). https://doi.org/10.1039/c7nj02977b

    Article  Google Scholar 

  54. E.E. Elemike, D.C. Onwudiwe, O.E. Fayemi, T.L. Botha, Appl. Phys. A 42, 125 (2019)

    Google Scholar 

Download references

Acknowledgements

EEE wishes to acknowledge North West University for granting him postdoctoral position and enabling environment for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias E. Elemike.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elemike, E.E., Onwudiwe, D.C., Ogeleka, D.F. et al. Phyto-assisted Preparation of Ag and Ag–CuO Nanoparticles Using Aqueous Extracts of Mimosa pigra and their Catalytic Activities in the Degradation of Some Common Pollutants. J Inorg Organomet Polym 29, 1798–1806 (2019). https://doi.org/10.1007/s10904-019-01142-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01142-y

Keywords

Navigation