Skip to main content
Log in

Facile Hydrothermal Synthesis of WO3 Nanoconifer Thin Film: Multifunctional Behavior for Gas Sensing and Field Emission Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Well aligned tungsten trioxide (WO3) nanoconifer films were synthesized on tungsten substrates employing a facile hydrothermal treatment. The structural properties of as-synthesized WO3 nanostructure thin films were confirmed by X-ray diffraction micro Raman spectroscopy, whereas surface morphology and elemental composition was revealed using scanning electron microscopy and energy dispersive X-ray spectroscopy. Gas sensing characteristics of the WO3 nanoconifer thin film towards NH3 (ammonia) gas were investigated. The WO3 nanoconifer thin film exhibited maximum sensor response of ~ 51.9% for 300 ppm of NH3 at operating temperature of ~ 175 °C. Interestingly the response and recover times were observed to be 35 and 62 s respectively, which are superior to the reported ones. Further, field emission study of WO3 nanoconifer thin film was carried at the base pressure of ~ 1 × 10−8 mbar. The values of turn-on and threshold fields (corresponding to emission current densities of 1 and 10 µA cm−2) are found to be 2.43 and 3.08 V µm−1, respectively. The WO3 nanoconifer thin film emitter delivered maximum current density of ~ 118.57 µA cm−2 at an applied field of 4.29 V µm−1. The emission current was observed to be fairly stable over duration four hours at a preset value ~ 2 µA, characterized with standard deviation around 7.86%. The observed FE characteristics are comparable to other semiconducting metal oxide nanostructures thin film emitters. The present results imply WO3 nanoconifer as a promising candidate for potential applications in gas sensing as well as field emission based applications in vacuum microelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.D. Nguyen, D.V. Dang, D.C. Nguyen, Adv. Nat. Sci. Nanosci. Nanotechnol. 6(3), 035006 (2015)

    Article  CAS  Google Scholar 

  2. X. Liu, N. Chen, B. Han, X. Xiao, G. Chen, I. Djerdj, Y. Wang, Nanoscale 7(36), 14872–14880 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. B. Timmer, W. Olthuis, A. Van Den Berg, Sens. Actuators B 107(2), 666–677 (2005)

    Article  CAS  Google Scholar 

  4. D. Chakraborty, H.N. Petersen, C. Elkjær, A. Cagulada, T. Johannessen, Fuel Cells Bull. 10, 12–15 (2009)

    Article  Google Scholar 

  5. B. Urasinska-Wojcik, T.A. Vincent, M.F. Chowdhury, J.W. Gardner, Sens. Actuators B 239, 1051–1059 (2017)

    Article  CAS  Google Scholar 

  6. R. Jolly Bose, N. Illyasukutty, K.S. Tan, R.S. Rawat, M. Vadakke Matham, H. Kohler, V.P. Mahadevan, Pillai, Appl. Surf. Sci. 440, 320–330 (2018)

    Article  CAS  Google Scholar 

  7. Y.H. Lee, C.H. Choi, Y.T. Jang, E.K. Kim, B.K. Ju, N.K. Min, J.H. Ahn, Appl. Phys. Lett. 81(4), 745–747 (2002)

    Article  CAS  Google Scholar 

  8. D. Chen, J. Ye, Adv. Funct. Mater. 18(13), 1922–1928 (2008)

    Article  CAS  Google Scholar 

  9. W.J. Li, Z.W. Fu, Appl. Surf. Sci. 256(8), 2447–2452 (2010)

    Article  CAS  Google Scholar 

  10. R. Godbole, A. Vedpathak, V. Godbole, S. Bhagwat, Mater. Res. Express 4(7), 076401 (2017)

    Article  CAS  Google Scholar 

  11. M. Hübner, C.E. Simion, A. Haensch, N. Barsan, U. Weimar, Sens. Actuators B 151(1), 103–106 (2010)

    Article  CAS  Google Scholar 

  12. D. Davazoglou, T. Dritsas, Sens. Actuators B 77(1–2), 359–362 (2001)

    Article  CAS  Google Scholar 

  13. M. Stankova, X. Vilanova, J. Calderer, E. Llobet, P. Ivanov, I. Gràcia, C. Cané, X. Correig, Sens. Actuators B 102(2), 219–225 (2004)

    Article  CAS  Google Scholar 

  14. T. Tesfamichael, C. Piloto, M. Arita, J. Bell, Sens. Actuators B 221, 393–400 (2015)

    Article  CAS  Google Scholar 

  15. Z. Liu, M. Miyauchi, T. Yamazaki, Y. Shen, Sens. Actuators B 140(2), 514–519 (2009)

    Article  CAS  Google Scholar 

  16. L. Zhou, J. Zou, M. Yu, P. Lu, J. Wei, Y. Qian, Y. Wang, C. Yu, Cryst. Growth Des. 8(11), 3993–3998 (2008)

    Article  CAS  Google Scholar 

  17. J. Xiao, P. Liu, Y. Liang, H.B. Li, G.W. Yang, Nanoscale 4(22), 7078–7083 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. S. Vallejos, T. Stoycheva, P. Umek, C. Navio, R. Snyders, C. Bittencourt, E. Llobet, C. Blackman, S. Moniz, X. Correig, Chem. Commun. 47(1), 565–567 (2011)

    Article  CAS  Google Scholar 

  19. Y. Wang, J. Liu, X. Cui, Y. Gao, J. Ma, Y. Sun, P. Sun, F. Liu, X. Liang, T. Zhang, G. Lu, Sens. Actuators B 238, 473–481 (2017)

    Article  CAS  Google Scholar 

  20. N. Van Hieu, V. Van Quang, N.D. Hoa, D. Kim, Curr. Appl. Phys. 11(3), 657–661 (2011)

    Article  Google Scholar 

  21. S.S. Warule, N.S. Chaudhari, J.D. Ambekar, B.B. Kale, M.A. More, ACS Appl. Mater. Interfaces 3(9), 3454–3462 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. M.S. Pawar, P.K. Bankar, M.A. More, D.J. Late, RSC Adv. 5(108), 88796–88804 (2015)

    Article  CAS  Google Scholar 

  23. W.A. De Heer, A. Chatelain, D. Ugarte, Science 270(5239), 1179–1180 (1995)

    Article  Google Scholar 

  24. A. Anderson, Spectro. Lett. 9(11), 809–819 (1976)

    Article  CAS  Google Scholar 

  25. F. Liu, X. Chen, Q. Xia, L. Tian, X. Chen, RSC Adv. 5(94), 77423–77428 (2015)

    Article  CAS  Google Scholar 

  26. T. Siciliano, A. Tepore, G. Micocci, A. Serra, D. Manno, E. Filippo, Sens. Actuators B 133(1), 321–326 (2008)

    Article  CAS  Google Scholar 

  27. K. Senthil, K. Yong, Nanotechnology 18(39), 395604 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. G.L. Frey, A. Rothschild, J. Sloan, R. Rosentsveig, R. Popovitz-Biro, R. Tenne, J. Solid State Chem. 162(2), 300–314 (2001)

    Article  CAS  Google Scholar 

  29. S. Bai, K. Zhang, R. Luo, D. Li, A. Chen, C.C. Liu, J. Mater. Chem. 22(25), 12643–12650 (2012)

    Article  CAS  Google Scholar 

  30. W. Ya-Qiao, H. Ming, W. Xiao-Ying, Chin. Phys. B 23(4), 040704 (2014)

    Article  CAS  Google Scholar 

  31. L. Nordheim, Proc. R. Soc. Lond. A 119(781), 173–181 (1928)

    Article  Google Scholar 

  32. A.A. Al-Tabbakh, M.A. More, D.S. Joag, I.S. Mulla, V.K. Pillai, ACS Nano 4(10), 5585–5590 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. K.K. Naik, R. Khare, D. Chakravarty, M.A. More, R. Thapa, D.J. Late, C.S. Rout, Appl. Phys. Lett. 105(23), 233101 (2014)

    Article  CAS  Google Scholar 

  34. S.R. Suryawanshi, P.K. Bankar, M.A. More, D.J. Late, RSC Adv. 5(80), 65274–65282 (2015)

    Article  CAS  Google Scholar 

  35. S.R. Suryawanshi, P.S. Kolhe, C.S. Rout, D.J. Late, M.A. More, Ultramicro 149, 51–57 (2015)

    Article  CAS  Google Scholar 

  36. C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Appl. Phys. Lett. 81(19), 3648–3650 (2002)

    Article  CAS  Google Scholar 

  37. Y.W. Zhu, T. Yu, F.C. Cheong, X.J. Xu, C.T. Lim, V.B.C. Tan, J.T.L. Thong, C.H. Sow, Nanotechnology 16(1), 88

  38. B. Varghese, C.H. Teo, Y. Zhu, M.V. Reddy, B.V. Chowdari, A.T.S. Wee, V.B.C. Tan, C.T. Lim, C.H. Sow, Adv. Funct. Mater. 17(12), 1932–1939 (2007)

    Article  CAS  Google Scholar 

  39. J. Liu, Z. Zhang, Y. Zhao, X. Su, S. Liu, E. Wang, Small 1(3), 310–313 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. J. Liu, Z. Zhang, C. Pan, Y. Zhao, X. Su, Y. Zhou, D. Yu, Mater. Lett. 58(29), 3812–3815 (2004)

    Article  CAS  Google Scholar 

  41. J.M. Wu, H.C. Shih, W.T. Wu, Chem. Phys. Lett. 413(4–6), 490–494 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors, gratefully acknowledges for financial support from BARC Mumbai, for the SRF award under DAE-BRNS (Board of Research in Nuclear Sciences) (Sanction No. 34/14/61/2014-BRNS) research project scheme. Also authors acknowledges to Fergusson College, Pune for providing research facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahendra A. More or Kishor M. Sonawane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolhe, P.S., Shirke, P.S., Maiti, N. et al. Facile Hydrothermal Synthesis of WO3 Nanoconifer Thin Film: Multifunctional Behavior for Gas Sensing and Field Emission Applications. J Inorg Organomet Polym 29, 41–48 (2019). https://doi.org/10.1007/s10904-018-0962-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0962-0

Keywords

Navigation