Skip to main content

Advertisement

Log in

Stable Colloidal Copper Nanoparticles Functionalized with Siloxane Groups and Their Microbicidal Activity

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The emergence and spread of pathogenic microbes with resistance to multiple antibiotics necessitates the development of new broad-spectrum microbicides. Metal nanoparticles are one such microbicide and they have been recognized for their potential value in fighting harmful microbes. In this work, we show the preparation and antimicrobial characterization of copper nanoparticles, with a small percentage of copper (I) oxide, synthesized by a chemical method based on a bottom-up approach in a nonaqueous medium. In particular, we developed a new route to stabilize the copper nanoparticles, synthesized in ethanol, using an aminosilane as a capping agent. The particles were later centrifuged and suspended in ethylene glycol. The morphology, structure and stability of the Cu-APTMS NPs were characterized by UV–Vis and FTIR spectroscopy, TEM, AFM and GI-XRD techniques. The presence of colloidal nanoparticles was found 4 months after synthesization and a characteristic absorption LSPR band was registered in the UV–Vis spectrum. The Cu-APTMS NPs showed a significant in vitro degradation activity against bacterial DNA, which is important in vivo microbicidal activity. The Cu-APTMS NPs showed a strong bactericidal effect against planktonic forms of Gram-negative (Pseudomonas aeruginosa and enterohemorrhagic Escherichia coli) and Gram-positive (Staphylococcus aureus and Listeria monocytogenes) bacteria. This bactericidal effect was also observed to severely limit the viability and germination proficiency of spores of the food-poisoning and gas-gangrene producer Clostridium perfringens. In addition, pathogenic fungi (Candida tropicalis and Fusarium verticillioides) were irreversibly deactivated by treatment with Cu-APTMS NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Guo, E. Wang, Noble metal Nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6, 240–264 (2011)

    Article  CAS  Google Scholar 

  2. Y. Yan, S.C. Warren, P. Fuller, B.A. Grzybowski, Chemoelectronic circuits based on metal nanoparticles. Nat. Nanotechnol. 11, 603–608 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. R.A. Potyrailo, Toward high value sensing: monolayer-protected metal nanoparticles in multivariable gas and vapor sensors. Chem. Soc. Rev. 46, 5311–5346 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. C. Shen, C. Hui, T. Yang, C. Xiao, J. Tian, L. Bao, S. Chen, H. Ding, H. Gao, Monodisperse noble-metal nanoparticles and their surface enhanced raman scattering properties. Chem. Mater. 20, 6939–6944 (2008)

    Article  CAS  Google Scholar 

  5. G. Prieto, J. Zecevic, H. Friedrich, K. Jong, P. Jongh, Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 12, 34–39 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. B. Roldan Cuenya, Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518, 3127–3150 (2010)

    Article  CAS  Google Scholar 

  7. S.M. Dizaj, F. Lotfipoura, M. Barzegar-Jalali, M.H. Zarrintana, K. Adibkiab, Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C 44, 278–284 (2014)

    Article  CAS  Google Scholar 

  8. F. Parveen, B. Sannakki, M. Mandke, H. Pathan, Copper nanoparticles: synthesis methods and its light harvesting performance. Solar Energy Mater. Solar Cells 144, 371–382 (2016)

    Article  CAS  Google Scholar 

  9. D. Deng, Y. Jin, Y. Cheng, T. Qi, F. Xiao, Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature. ACS Appl. Mater. Interfaces 5, 3839–3846 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. S. Jeong, S.H. Lee, Y. Jo, S.S. Lee, Y. Seo, B. Ahn, G. Kim, G. Jang, J. Park, B. Ryu, Y. Choi, Air-stable, surface-oxide free Cu nanoparticles for highly conductive Cu ink and their application to printed graphene transistors. J. Mater. Chem. C. 1, 2704–2710 (2013)

    Article  CAS  Google Scholar 

  11. Y. Guo, F. Cao, X. Lei, L. Mang, S. Cheng, J. Song, Fluorescent copper nanoparticles: recent advances in synthesis and applications for sensing metal ions. Nanoscale 8, 4852–4863 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. T. Ramani, K. Prasant, B. Sreedhar, Air stable colloidal copper nanoparticles: synthesis, characterization and their surface-enhanced Raman scattering properties. Phys. E 77, 65–71 (2016)

    Article  CAS  Google Scholar 

  13. M. Gawande, A. Goswami, F. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zborl, R. Varma. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 116, 3722–3811 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. T. Kruk, K. Szczepanowicz, J. Stefanska, R. Socha. P. Warszynski, Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surf. B 128, 17–22 (2015)

    Article  CAS  Google Scholar 

  15. L. Duran Pachon, G. Rothenberg, Transition-metal nanoparticles: synthesis, stability and the leaching issue. Appl. Organometal. Chem. 22, 288–299 (2008)

    Article  CAS  Google Scholar 

  16. T. Dang-Bao, C. Pradel, I. Favier, M. Gómez, Making copper(0) nanoparticles in glycerol: a straightforward synthesis for a multipurpose catalyst. Adv. Synth. Catal. 359, 2832–2846 (2017)

    Article  CAS  Google Scholar 

  17. B.H. Patel, M.Z. Channiwala, S.B. Chaudhari, A.A. Mandot, Biosynthesis of copper nanoparticles; its characterization and efficacy against human pathogenic bacterium. J. Environ. Chem. Eng. 4, 2163–2169 (2016)

    Article  CAS  Google Scholar 

  18. L. Esteban-Tejeda, F. Malpartida, A. Esteban-Cubillo, C. Pecharromán, J.S. Moya. Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology. 20, 505701 (2009)

    Article  CAS  PubMed  Google Scholar 

  19. Y.W. Baek, Y.J. An, Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO and Sb2O3) to Escherichia coli, Bacillus subtilis and Streptococcus aureus. Sci. Total Envirom. 409, 1603–1608 (2011)

    Article  CAS  Google Scholar 

  20. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, A. Memic, Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int. J. Nanomed. 7, 3527–3535 (2012)

    Article  CAS  Google Scholar 

  21. A.K. Chatterjee, R.K. Sarkar, A.P. Chattopadhyay, P. Aich, R. Chakraborty, T. Basu, A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology. 23, 085103 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. M.S. Hassan, T. Amna, O.B. Yang, M.H. El-Newehy, S.S. Al-Deyab, M.S. Khil. Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity. Colloids Surf. B. Biointerfaces. 97, 201–206 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. A. Pramanik, D. Laha, D. Bhattacharya, P. Pramanik, P. Karmakar, A novel study on antibacterial activity of copper iodide nanoparticles mediated by DNA and membrane damage. Colloids Surf. B. Biointerfaces. 96, 50–55 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. K. Giannousi, K. Lafazanis, J. Arvanitidis, A. Pantazaki, C. Dendrinou-Samara, Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA. J. Inorg. Biochem. 133, 24–32 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. D. Yohan, D. Chithrani, Applications of nanoparticles in nanomedicine. J. Biomed. Nanotechnol. 10, 2371–2392 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. T.V. Duncan, Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363, 1–24 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. J.A. Lemire, J.J. Harrison, S.P. Turner, Antimicrobial activity of metals, mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2016)

    Article  CAS  Google Scholar 

  28. A. Stacy, L. McNally, S.E. Darch, S.P. Brown, M. Whiteley, The biogeography of polymicrobial infection. Nat. Rev. Microbiol. 14, 93–105 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. A.N. Kremer, H.J. Hoffmann, Substractive hybridization yields a silver resistance determinant unique to nosocomial pathogens in the Enterobacter cloacae complex. J. Clin. Microbiol. 50, 3249–3257 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. L.L. Maragakis, E.N. Perencecich, S.E. Cosgrove, Clinical and economic burden of antimicrobial resistance. Expert Rev. Anti-Infect. Ther. 5, 751–763 (2008)

    Article  Google Scholar 

  31. A. Alanis, Resistance to antibiotics: are we in the post-antibiotic era? Arch. Med. Res. 36, 697–705 (2005)

    Article  PubMed  Google Scholar 

  32. R. Laxminarayan, A. Duse, C. Wattal, A.K.M. Zaidi, F. Heiman, L. Wertheim, N. Sumpradit, E. Vlieghe et al., Antimicrobial resistance the need for global solutions. Lancet Inf. Dis. 12, 1057–1098 (2013)

    Article  Google Scholar 

  33. T.D. Gootz, The global problem of antibiotic resistance. Crit. Rev. Immunol. 30, 79–93 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. CDC, Antibiotic resistance threats in the United States (Center for Disease Control and Prevention, Atlanta, 2013)

    Google Scholar 

  35. U. Theuretzbacher, Antibiotic innovation for future public health needs. Clin. Microbiol. Infect. 23, 713–717 (2017)

    Article  CAS  PubMed  Google Scholar 

  36. S. Rossiter, M. Fletcher, W. Wuest, Natural products as platforms to overcome antibiotic resistance. Chem. Rev. 117, 12415–12474 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. V. Challinor, H. Bode, Bioactive natural products from novel microbial sources. Ann. NY. Acad. Sci. 1354, 82–97 (2015)

    Article  PubMed  Google Scholar 

  38. T. Rahman, B. Yarnall, D. Doyle, Efflux drug transporters at the forefront of antimicrobial resistance. Eur. Biophys. J. 46, 647–653 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. Correia, P. Poeta, M. Hébraud, J.L. Capelo, G. Igrejas, Mechanisms of quinolone action and resistance: where do we stand? J. Med. Microbiol. 66, 551–559 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. D. Dar, R. Sorek, Regulation of antibiotic-resistance by non-coding RNA in bacteria. Curr. Opin. Microbiol. 36, 111–117 (2017)

    Article  CAS  PubMed  Google Scholar 

  41. N. Hѳiby, T. Bjarnsholt, M. Givskov, S. Molinc, O. Ciofub, Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agent. 35, 322–332 (2010)

    Article  CAS  Google Scholar 

  42. A.K. Thabit, J.L. Crandon, D.P. Nicolau, Antimicrobial resistance: impact on clinical and economical outcomes and the need for new antimicrobials. Expert Opin. Pharmacother. 2, 159–177 (2015)

    Article  CAS  Google Scholar 

  43. J.N. Slavin, J. Asnis, U.O. Häfeli, H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15, 65 (2017)

    Article  CAS  Google Scholar 

  44. F.N. Oktar, M. Yetmez, D. Ficai, A. Ficai, F. Dumitru, A. Pica, Molecular mechanisms and targets of the antimicrobial activity of metal nanoparticles. Curr. Top. Med. Chem. 15, 1583–1588 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017)

    Article  CAS  Google Scholar 

  46. G.R. Rudamurthy, M.K. Swamy, U.R. Sinniah, A. Ghasemzadeh, Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21, 836 (2016)

    Article  CAS  Google Scholar 

  47. M. Vincent, R.E. Duval, P. Hartemann, M. Engels-Deutsch, Contact killing and antimicrobial properties of copper. J. Appl. Microbiol. 124, 1032–1046 (2017)

    Article  Google Scholar 

  48. H. Palza, M. Nuñez, R. Bastías, K. Delgado, In situ antimicrobial behavior of materials with copper-based additives in a hospital environment. Int. J. Antimicrob. Agents 51, 912–917 (2018)

    Article  CAS  PubMed  Google Scholar 

  49. T.M. Dung Dang, T.T. Tuyet Le, E. Fribourg-Blanc, M. Chien Dang, The influence of solvents and surfactants on the preparation of copper nanoparticles by a chemical reduction method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 025004 (2011)

    Article  CAS  Google Scholar 

  50. P. Singh, Y. Kim, D. Zhang, D. Yang, Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 588–599 (2016)

    Article  CAS  PubMed  Google Scholar 

  51. N. Pantidos, M.C. Edmundson, L. Horsfall, Room temperature bioproduction, isolation and anti-microbial properties of stable elemental copper nanoparticles. New Biotechnol. 40, 275–281 (2018)

    Article  CAS  Google Scholar 

  52. N. Nagar, V. Devra, Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves. Mater. Chem. Phys. 213, 44–51 (2018)

    Article  CAS  Google Scholar 

  53. N. Sreeju, A. Rufus, D. Philip, Microwave–assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications. J. Mol. Liq. 221, 1008–1021 (2016)

    Article  CAS  Google Scholar 

  54. G.H. Hong, S.W. Kang, Synthesis of monodisperse copper nanoparticles by utilizing 1-butyl-3-methylimidazolium nitrate and its role as counteranion in ionic liquid in the formation of nanoparticles. Ind. Eng. Chem. Res. 52, 794–797 (2013)

    Article  CAS  Google Scholar 

  55. C. Schmadicke, M. Poetschke, L.D. Renner, L. Baraban, M. Bobeth, G. Cuniberti, Copper nanowire synthesis by directed electrochemical nanowire assembly. RSC Adv 4, 46363–46368 (2014)

    Article  CAS  Google Scholar 

  56. M.H. Kang, S.J. Lee, J.Y. Park, J.K. Park, Carbon-coated copper nanoparticles: Characterization and fabrication via ultrasonic irradiation. J. Alloys Compd. 735, 2162–2166 (2018)

    Article  CAS  Google Scholar 

  57. A.R. Sadrolhosseini, A.S.B.M. Noor, K. Shameli, G. Mamdoohi, M.M. Moksin, M.A. Mahdi, Laser ablation synthesis and optical properties of copper nanoparticles. J. Mater. Res. 28, 2629–2636 (2013)

    Article  CAS  Google Scholar 

  58. A. Kumar, A. Saxena, A. De, R. Shankar, S. Mozumdar, Facile synthesis of size-tunable copper and copper oxide nanoparticles using reverse microemulsions. RSC Adv. 3, 5015–5021 (2013)

    Article  CAS  Google Scholar 

  59. A. Wang, L. Chen, F. Xu, Z. Yan, In-situ synthesis of copper nanoparticles within ionic liquid–in—vegetable oil microemulsions and their direct use as high efficient nanolubricants. RSC Adv. 4, 45251–45257 (2014)

    Article  CAS  Google Scholar 

  60. L. Xu, J.H. Peng, C. Srinivasakannan, L.B. Zhang, D. Zhang, C. Liu, S.X. Wang, A.Q. Shen. Synthesis of copper nanoparticles by a T-shaped microfluidic device. RSC Adv. 4, 25155–25159 (2014)

    Article  CAS  Google Scholar 

  61. Q. Liu, D. Zhou, Y. Yamamoto, R. Ichino, M. Okido, Preparation of Cu nanoparticles with NaH4 by aqueous reduction method. Trans. Nonferrous Met. Soc. China 22, 117–123 (2012)

    Article  CAS  Google Scholar 

  62. K. Liu, Y. Song, S. Chen, Electrocatalytic activities of alkyne-functionalized copper nanoparticles in oxygen reduction in alkaline. Media. J. Power Sources 268, 469–475 (2014)

    Article  CAS  Google Scholar 

  63. Y. Hokita, M. Kanzaki, T. Sugiyama, R. Arakawa, H. Kawasaki, High-concentration synthesis of sub-10-nm copper nanoparticles for application to conductive nanoinks. ACS Appl. Mater. Interfaces 7, 19382–19389 (2015)

    Article  CAS  PubMed  Google Scholar 

  64. H.X. Zhang, U. Siegert, R. Liu, W.B. Cai. Facile fabrication of ultrafine copper nanoparticles in organic solvent. Nanoscale Res. Lett. 4, 705–708 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. B.K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, J.S. Kim, Synthesis and size control of monodisperse copper nanoparticles by polyol method. J. Coll. Interface Sci. 311, 417–424 (2007)

    Article  CAS  Google Scholar 

  66. M.V. Roldán, P. de Oña, Y. Castro, A. Durán, P. Faccendini, C. Lagier, R. Grau, N.S. Pellegri, Photocatalytic and biocidal activity of novel coating systems of mesoporous and dense TiO2-anatase containing silver nanoparticles. Mater. Sci. Eng. C 43, 630–640 (2014)

    Article  CAS  Google Scholar 

  67. M.V. Roldán, Y. Castro, N. Pellegri, A. Durán, Enhanced photocatalytic activity of mesoporous TiO2 Sol-Gel coatings doped with Ag nanoparticles. J. Sol-Gel Sci. Technol. 76, 180–194 (2015)

    Article  CAS  Google Scholar 

  68. C. Rodriguez-Abreu, M. Sánchez-Domínguez, Nanocolloids: A Meeting Point for Scientists and Technologists, 1st edn. (Elsevier, 2016), pp. 159

  69. L. Liz-Marzán, M. Giersig, P. Mulvaney, Synthesis of gold-silica core-shell particles. Langmuir. No. 18 12, 4329–4335 (1996)

    Article  Google Scholar 

  70. P. Pongwan, K. Wetchakun, S. Phanichphan, N. Wetchakun, Enhancement of visible-light photocatalytic activity of Cu-doped TiO2 nanoparticles. Res. Chem. Intermed. 42, 4 (2015)

    Google Scholar 

  71. X.-M. Zhu, Y.-X.J. Wang, K.C.-F. Leung, S.-F. Lee, F. Zhao, D.-W. Wang, J.M. Lai, C. Wan, C.H. Cheng, A.T. Ahuja, Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines. Int. J. Nanomed. 7, 953–964 (2012)

    Article  CAS  Google Scholar 

  72. A.L. Arabolaza, A. Nakamura, M.E. Pedrido, L. Martelotto, L. Orsaria, R.R. Grau. Characterization of a novel inhibitory feeback of the anti-anti-sigma SpoIIA on Spo0A activation during development in Bacillus subtilis. Mol. Microbiol. 47, 1251–1263 (2003)

    Article  CAS  PubMed  Google Scholar 

  73. M.B. Méndez, A. Goñi, W. Ramirez, R.R. Grau. Sugar inhibits the production of the toxins that trigger clostridial gas gangrene. Microb. Pathog. 52, 85–91 (2012)

    Article  CAS  PubMed  Google Scholar 

  74. R. Grau, D. Gardiol, G.C. Glikin, D. de Mendoza, DNA supercoiling and thermal regulation of unsaturated fatty acid synthesis in Bacillus subtilis. Mol. Microbiol. 11, 933–941 (1994)

    Article  CAS  PubMed  Google Scholar 

  75. V.A. Philippe, M.B. Méndez, I.H. Huang, L.M. Orsaria, M.R. Sarker, R.R. Grau. Inorganic phosphate induces spore morphogenesis and enterotoxin production in the intestinal pathogen Clostridium perfringens. Infect. Immun. 74, 3651–3656 (2006)

    CAS  Google Scholar 

  76. T. Igarashi, P. Setlow, Interaction between individual protein components of the GerA and GerB nutrient receptors that trigger germination on Bacillus subtilis spores. J. Bacteriol. 187, 2514–2518 (2005)

    Article  CAS  Google Scholar 

  77. D.V. Ravi Kumar, I. Kim, Z. Zhong, K. Kim, D. Lee, J. Moon, Cu(II)-alkyl amine complex mediated hydrothermal synthesis of Cu nanowires: exploring the dual role of alkyl amines. Phys. Chem. Chem. Phys. 16, 22107 (2014)

    Article  CAS  Google Scholar 

  78. K. Rice, A. Paterson, M. Stoykovich, Nanoscale Kirkendall effect and oxidation kinetics in copper nanocrystals characterized by real-time, in situ optical spectroscopy, Part. Part. Syst. Charact. 32, 1–8 (2014)

    Google Scholar 

  79. L. Lutterotti, Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nuclear Inst. Methods Phys. Res. B 268, 334–340 (2010)

    Article  CAS  Google Scholar 

  80. C. Salzemann, A. Brioude, M.-P. Pileni, Tuning of copper nanocrystals optical properties with their shapes. J. Phys. Chem. B 110, 7208–7212 (2006)

    Article  CAS  PubMed  Google Scholar 

  81. S. Bhattacharjee, DLS and zeta potential-What they are and what they are not? J. Control. Release 235, 337–351 (2016)

    Article  CAS  PubMed  Google Scholar 

  82. G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd. edn. (John Wiley & Sons Ltd., Chichester, 2001), p. 145

  83. L. Téllez, F. Rubio, R. Peña-Alonso, J. Rubio, Seguimiento por espectroscopia infrarroja (FT-IR) de la copolimerización de TEOS (tetraetilortosilicato) y PDMS (polidimetilsiloxano) en presencia de tbt (tetrabutiltitanio). Bol. Soc. Esp. Ceram. 43, 883–890 (2004)

    Article  Google Scholar 

  84. M.V. Roldán, N.S. Pellegri, O.A. de Sanctis, Optical response of silver nanoparticles stabilized by amines to LSPR based sensors. Proc. Mater. Sci. 1, 594–600 (2012)

    Article  CAS  Google Scholar 

  85. R.C. Rodríguez, L. Yate, E. Coy, ÁM. Martínez-Villacorta, A.V. Bordonia, S. Moya, P.C. Angelomé, Copper nanoparticles synthesis in hybrid mesoporous thin films: controlling oxidation state and catalytic performance through pore chemistry. Appl. Surf. Sci. 471, 862–868 (2019)

    Article  CAS  Google Scholar 

  86. V. Donato, F. Rodríguez Ayala, S. Cogliati, C. Bauman, J.G. Costa, C. Leñini, R. Grau, Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signaling pathway. Nat Commun. 8, 14332 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. M. Mendez, I. Huang, K. Ohtani, R. Grau, T. Shimizu, M.R. Sarker, Carbon catabolite repression of type IV pilus-dependent gliding motility in the anaerobic pathogen Clostridium perfringens. J. Bacteriol. 190, 48–60 (2008)

    Article  CAS  PubMed  Google Scholar 

  88. J.M. Rangel, P.H. Sparling, C. Crowe, P.M. Griffin, D.L. Swerdlow, Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 11, 603–609 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  89. J.A. Vázquez-Boland, M. Kuhn, P. Berche, T. Chakraborty, G. Domínguez-Bernal, W. Goebel, B. González-Zorn, J. Wehland, J. Kreft, Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584–640 (2001)

    Article  PubMed  PubMed Central  Google Scholar 

  90. Y.D. Bakthavatchalam, L.E. Nabarro, B. Veeraraghavan, Evolving rapid methicillin-resistant Staphylococcus aureus detection: cover all the bases. J. Glob. Infect. Dis. 9, 18–22 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. A.K. Chatterjee, R. Chakraborty, T. Basu, Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25, 135101 (2014)

    Article  CAS  PubMed  Google Scholar 

  92. T. Maniatis, E.F. Fritsch, J. Sambrook. Molecular cloning: a laboratory manual. (Cold Spring Harbor Laboratory, New York, 545, 1982). ISBN 0-87969-136-0

    Google Scholar 

  93. A. Bonici, G. Lusvardi, G. Malavasi, L. Menabue, A. Piva, Synthesis and characterization of bioactive glasses functionalized with Cu nanoparticles and organic molecules. J. Eur. Ceram. Soc. 32, 2777–2783 (2012)

    Article  CAS  Google Scholar 

  94. V. Ainaa, G. Cerrato, G. Martra, G. Malavasid, G. Lusvardid, L. Menabue, Towards the controlled release of metal nanoparticles from biomaterials: physico-chemical, morphological and bioactivity features of Cu-containing sol-gel glasses. Appl. Surf. Sci. 283, 240–248 (2013)

    Article  CAS  Google Scholar 

  95. S. Jadhav, S. Gaikwad, M. Nimse, A. Rajbhoj, Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. J. Clust. Sci. 22, 121–129 (2011)

    Article  CAS  Google Scholar 

  96. M. Hans, A. Erbe, S. Mathews, Y. Chen, M. Solioz, F. Mücklich. Role of copper oxides in contact killing of bacteria. Langmuir 29, 16160–16166 (2013)

    Article  CAS  PubMed  Google Scholar 

  97. O. Akhavan, E. Ghaderi, Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf. Coat. Technol. 205, 219–223 (2010)

    Article  CAS  Google Scholar 

  98. S. Cogliati, J.G. Costa, F. Rodriguez Ayala, V. Donato, R. Grau, Bacterial spores and its relatives as agents of mass destruction. J. Bioterror. Biodef 7, 141 (2016)

    Article  CAS  Google Scholar 

  99. M.J. Leggett, G. McDonnell, S.P. Denyer, P. Setlow, J.Y. Maillard, Bacterial spore structures and their protective role in biocide resistance. J. Appl. Microbiol. 113, 485–498 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP-2013-0553) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT 20103-423 and PICT 2012-2577) for the financial support. We also thank Dra. Renata Strubbia for the assistance in acquiring the TEM images and Dr. Nestor Delorenzi for the use of the zeta potential analizer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Grau or Nora Pellegri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porta, E., Cogliati, S., Francisco, M. et al. Stable Colloidal Copper Nanoparticles Functionalized with Siloxane Groups and Their Microbicidal Activity. J Inorg Organomet Polym 29, 964–978 (2019). https://doi.org/10.1007/s10904-018-01071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-01071-2

Keywords

Navigation