Skip to main content
Log in

Solving k-center problems involving sets based on optimization techniques

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The continuous k-center problem aims at finding k balls with the smallest radius to cover a finite number of given points in \(\mathbb {R}^n\). In this paper, we propose and study the following generalized version of the k-center problem: Given a finite number of nonempty closed convex sets in \(\mathbb {R}^n\), find k balls with the smallest radius such that their union intersects all of the sets. Because of its nonsmoothness and nonconvexity, this problem is very challenging. Based on nonsmooth optimization techniques, we first derive some qualitative properties of the problem and then propose new algorithms to solve the problem. Numerical experiments are also provided to show the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population.

  2. https://www.mathworks.com/help/map/pcarree.html.

References

  1. Alonso, J., Martini, H., Spirova, M.: Minimal enclosing discs, circumcircles, and circumcenters in normed planes. Comput. Geom. 45, 258–274 (2012)

    Article  MathSciNet  Google Scholar 

  2. An, L.T.H., Tao, P.D.: DC programming and DCA: thirty years of developments. Math. Prog. 169, 5–64 (2018)

    Article  MathSciNet  Google Scholar 

  3. An, N.T., Giles, D., Nam, N.M., Rector, R.B.: The log-exponential smoothing technique and Nesterov’s accelerated gradient method for generalized Sylvester problems. J. Optim. Theory Appl. 168, 559–583 (2016)

    Article  MathSciNet  Google Scholar 

  4. Artacho, F.J.A., Vuong, P.T.: The boosted DC algorithm for nonsmooth functions. arXiv:1812.06070 (2018)

  5. Brimberg, J., Wesolowsky, G.O.: Locating facilities by minimax relative to closest points of demand areas. Comput. Oper. Res. 29, 625–636 (2002)

    Article  MathSciNet  Google Scholar 

  6. Cheng, C., Hu, X., Martin, C.: On the smallest enclosing balls. Commun. Inf. Syst. 6, 137–160 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Das, P., Chakraborti, N.R., Chaudhuri, Pk: Spherical minimax location problem. Comput. Optim. Appl. 18, 311–326 (2001)

    Article  MathSciNet  Google Scholar 

  8. Drager, L., Lee, J., Martin, C.: On the geometry of the smallest circle enclosing a finite set of points. J. Frankl. Inst. 344, 929–940 (2007)

    Article  MathSciNet  Google Scholar 

  9. Drezner, Z.: The \(p\)-center problem—heuristic and optimal algorithms. J. Oper. Res. Soc. 35, 741–7488 (1984)

    MATH  Google Scholar 

  10. Drezner, Z., Wesolowsky, G.O.: Minimax and maximin facility location problems on a sphere. Naval Res. Logist. 30, 305–312 (1983)

    Article  MathSciNet  Google Scholar 

  11. Elshaikh, A., Salhi, S., Brimberg, J., Mladenovic, N., Callaghan, B., Nagy, G.: Adaptive perturbation based heuristics: an application for the continuous \(p\)-centre problem. Comput. Oper. Res. 75, 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  12. Fischer, k, Gärtner, B.: The smallest enclosing ball of balls: combinatorial structure and algorithms. Int. J. Comput. Geom. Appl. 14, 341–378 (2004)

    Article  MathSciNet  Google Scholar 

  13. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  Google Scholar 

  14. Hakimi, S.: Optimum location of switching centers and the absolute centers and medians of a graph. Oper. Res. 12, 450–459 (1964)

    Article  Google Scholar 

  15. Hakimi, S.: Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper. Res. 13, 462–475 (1965)

    Article  MathSciNet  Google Scholar 

  16. Hazewinkel, M. (ed.): Fermat–Torricelli Problem. Encyclopedia of Mathematics. Springer, Berlin (2001)

    Google Scholar 

  17. Hearn, D.W., Vijay, J.: Efficient algorithms for the (weighted) minimum circle problem. Oper. Res. 30, 777–795 (1981)

    Article  MathSciNet  Google Scholar 

  18. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Fundamentals. Springer, Berlin (1993)

    Book  Google Scholar 

  19. Hunter, D.R., Lange, k: Tutorial on MM algorithms. Am. Stat. 58, 30–37 (2004)

    Article  MathSciNet  Google Scholar 

  20. Iyigun, C., Ben-Israel, A.: A generalized Weiszfeld method for the multi-facility location problem. Oper. Res. Lett. 38, 207–214 (2010)

    Article  MathSciNet  Google Scholar 

  21. Jahn, T., Kupitz, Y.S., Martini, H., Richter, C.: Minsum location extended to gauges and to convex sets. J. Optim. Theory Appl. 166, 711–746 (2015)

    Article  MathSciNet  Google Scholar 

  22. Lange, k, Hunter, D.R., Yang, I.: Optimization transfer using surrogate objective functions. J. Comput. Graph. Stat. 9, 1–59 (2000). (with discussion)

    MathSciNet  Google Scholar 

  23. Mordukhovich, B.S., Nam, N.M.: Applications of variational analysis to a generalized Fermat–Torricelli problem. J. Optim. Theory Appl. 148, 431–454 (2011)

    Article  MathSciNet  Google Scholar 

  24. Mordukhovich, B.S., Nam, N.M., Villalobos, C.: The smallest enclosing ball problem and the smallest intersecting ball problem: existence and uniqueness of optimal solutions. Optim. Lett. 7, 839–853 (2013)

    Article  MathSciNet  Google Scholar 

  25. Mordukhovich, B.S., Nam, N.M.: An Easy Path to Convex Analysis and Applications. Morgan & Claypool Publishers, San Rafael (2014)

    MATH  Google Scholar 

  26. Nam, N.M., An, N.T., Salinas, J.: Applications of convex analysis to the smallest intersecting ball problem. J. Convex Anal. 19, 497–518 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Nam, N.M., Hoang, N.: A generalized Sylvester problem and a generalized Fermat–Torricelli problem. J. Convex Anal. 20, 669–687 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Nam, N.M., Rector, R.B., Giles, D.: Minimizing differences of convex functions with applications to facility location and clustering. J. Optim. Theory Appl. 173, 255–278 (2017)

    Article  MathSciNet  Google Scholar 

  29. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103, 127–152 (2005)

    Article  MathSciNet  Google Scholar 

  30. Nickel, S., Puerto, J., Rodriguez-Chia, A.M.: An approach to location models involving sets as existing facilities. Math. Oper. Res. 28, 693–715 (2003)

    Article  MathSciNet  Google Scholar 

  31. Nielsen, F., Nock, R.: Approximating smallest enclosing balls with applications to machine learning. Int. J. Comput. Geom. Appl. 19, 389–414 (2009)

    Article  MathSciNet  Google Scholar 

  32. Puerto, J., Rodriguez-Chia, A.M.: On the structure of the solution set for the single facility location problem with average distances. Math. Program., Ser. A 128, 373–401 (2011)

    Article  MathSciNet  Google Scholar 

  33. Sylvester, J.J.: A question in the geometry of situation. Q. J. Math. 1, 79 (1857)

    Google Scholar 

  34. Tao, P.D., An, L.T.H.: Convex analysis approach to D.C. programming: theory, algorithms and applications. Acta Math. Vietnam. 22, 289–355 (1997)

    MathSciNet  MATH  Google Scholar 

  35. Tao, P.D., An, L.T.H.: A D.C. optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8, 476–505 (1998)

    Article  MathSciNet  Google Scholar 

  36. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (ed.) Lecture Notes in Computer Science, vol. 555, pp. 359–370. Springer, Berlin (1991)

    Google Scholar 

  37. Yildirim, E.A.: On the minimum volume covering ellipsoid of ellipsoids. SIAM J. Optim. 17, 621–641 (2006)

    Article  MathSciNet  Google Scholar 

  38. Yildirim, E.A.: Two algorithms for the minimum enclosing ball problem. SIAM J. Optim. 19, 1368–1391 (2008)

    Article  MathSciNet  Google Scholar 

  39. Zhai, X.: Two Problems in Convex Conic Optimization. Master’s thesis, National University of Singapore (2007)

  40. Zhou, G., Toh, K.C., Sun, J.: Efficient algorithms for the smallest enclosing ball problem. Comput. Optim. Appl. 30, 147–160 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the two anonymous referees for taking their valuable time to read and give us invaluable comments that allowed us to improve the presentation and the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article was supported by the National Natural Science Foundation of China under Grant No.11401152.

N. T. An and X. Qin: Research of the first author was supported by the National Natural Science Foundation of China under Grant No.11950410503, the China Postdoctoral Science Foundation under Grant No.2017M622991 and the Vietnam National Foundation for Science and Technology Development under Grant No.101.01-2017.325. N. M. Nam: Research of the second author was partly supported by the National Science Foundation under Grant DMS-1716057.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, N.T., Nam, N.M. & Qin, X. Solving k-center problems involving sets based on optimization techniques. J Glob Optim 76, 189–209 (2020). https://doi.org/10.1007/s10898-019-00834-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00834-6

Keywords

AMS Subject Classification

Navigation