Skip to main content
Log in

An implementation of exact knapsack separation

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Cutting planes have been used with great success for solving mixed integer programs. In recent decades, many contributions have led to successive improvements in branch-and-cut methods which incorporate cutting planes in branch and bound algorithm. Using advances that have taken place over the years on 0–1 knapsack problem, we investigate an efficient approach for 0–1 programs with knapsack constraints as local structure. Our approach is based on an efficient implementation of knapsack separation problem which consists of the four phases: preprocessing, row generation, controlling numerical errors and sequential lifting. This approach can be used independently to improve formulations with cutting planes generated or incorporated in branch and cut to solve a problem. We show that this approach allows us to efficiently solve large-scale instances of generalized assignment problem, multilevel generalized assignment problem, capacitated \(p\)-median problem and capacitated network location problem to optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.

  2. http://miplib.zib.de/.

References

  1. Ceselli, A.: Two exact algorithms for the capacitated p-median problem. 4OR 1, 319–340 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Ceselli, A., Righini, G.: A branch and price algorithm for the capacitated \(p\)-median problem. Networks 45(3), 125–142 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pigatti, A., Poggi de Aragao, M., Uchoa, E.: Stabilized branch-and-cut-and-price for the generalized assignment problem. In: 2nd Brazilian Symposium on Graphs, Algorithms and Combinatorics. Electronic Notes in Discrete Mathematics vol. 19, pp. 389–395 (2005)

  4. Avella, P., Boccia, M., Vasilyev, I.: A computational study of exact knapsack separation for the generalized assignment problem. Comput. Optim. Appl. 45, 543–555 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boccia, M., Sforza, A., Sterle, C., Vasilyev, I.: A cut and branch approach for the capacitated \(p\)-median problem based on fenchel cutting planes. J. Math. Model. Algorithms 7, 43–58 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Vasilev, I.: A cutting plane method for knapsack polytope. J. Comput. Syst. Sci. Int. 48, 70–77 (2009)

    Article  Google Scholar 

  7. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

    Book  MATH  Google Scholar 

  8. Boyd, E.A.: Generating fenchel cutting planes for knapsack polyhedra. SIAM J. Optim. 3, 734–750 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boyd, E.A.: Solving integer programs with cutting planes and preprocessing. IPCO 1993, 209–220 (1993)

    MATH  Google Scholar 

  10. Boyd, E.A.: Fenchel cutting planes for integer programming. Oper. Res. 42, 53–64 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boyd, E.A.: On the convergence of fenchel cutting planes in mixed-integer programming. SIAM J. Optim. 5, 421–435 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fukasawa, R., Goycoolea, M.: On the exact separation of mixed integer knapsack cuts. Math. Program. 128(1–2), 19–41 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kaparis, K., Letchford, A.N.: Separation algorithms for 0–1 knapsack polytopes. Math. Program. 124, 69–91 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bonami, M.P.: Étude et mise en oeuvre dapproches polyédriques pour la résolution de programmes en nombres entiers ou mixtes généraux. Ph.D. thesis, L’Université Paris 6 (2003)

  15. Espinoza, D.G.: On Linear Programming, Integer Programming and Cutting Planes. PhD thesis, Georgia Institute of Technology, School of Industrial and Systems Engineering (2006)

  16. Avella, P., Boccia, M., Vasilyev, I.: Computational testing of a separation procedure for the knapsack set with a single continuous variable. INFORMS J. Comput. 24(1), 165–171 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Avella, P., Boccia, M., Vasilyev, I.: Computational experience with general cutting planes for the set covering problem. Oper. Res. Lett. 37(1), 16–20 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Implementing the dantzig–fulkerson–johnson algorithm for large traveling salesman problems. Math. Program. 97, 91–153 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics). Princeton University Press, Princeton (2007)

    Google Scholar 

  20. Cornuejols, G., Lemarechal, C.: A convex-analysis perspective on disjunctive cuts. Math. Program. 106(3), 567–586 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pisinger, D.: A minimal algorithm for the 0–1 knapsack problem. Oper. Res. 46, 758–767 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2005)

    MATH  Google Scholar 

  23. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, London (1990)

    MATH  Google Scholar 

  24. Posta, M., Ferland, J.A., Michelon, P.: An exact method with variable fixing for solving the generalized assignment problem. Comput. Optim. Appl. 52, 629–644 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Beasley, J.E.: Or-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990)

    Article  Google Scholar 

  26. Glover, F., Hultz, J., Klingman, D.: Improved computer-based planning techniques. part ii. Interfaces 9(4), 12–20 (1979)

    Article  Google Scholar 

  27. French, A.P., Wilson, J.M.: Heuristic solution methods for the multilevel generalized assignment problem. J. Heuristics 8, 143–153 (2002)

    Article  MATH  Google Scholar 

  28. Laguna, M., Kelly, J.P., Gonzlez-Velarde, J.L., Glover, F.: Tabu search for the multilevel generalized assignment problem. Eur. J. Oper. Res. 82(1), 176–189 (1995)

    Article  MATH  Google Scholar 

  29. Osorio, M.A., Laguna, M.: Logic cuts for multilevel generalized assignment problems. Eur. J. Oper. Res. 151(1), 238–246 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ceselli, A., Righini, G.: A branch-and-price algorithm for the multilevel generalized assignment problem. Oper. Res. 54(6), 1172–1184 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Baldacci, R., Hadjiconstantinou, E., Maniezzo, V., Mingozzi, A.: A new method for solving capacitated location problems based on a set partitioning approach. Comput. Oper. Res. 29, 365–386 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lorena, L., Senne, E.: A column generation approach to capacitated p-median problems. Comput. Oper. Res. 31(6), 863–876 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ceselli, A., Liberatore, Federico, Righini, Giovanni: A computational evaluation of a general branch-and-price framework for capacitated network location problems. Ann. Oper. Res. 167, 209–251 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Holmberg, K., Rnnqvist, M., Yuan, D.: An exact algorithm for the capacitated facility location problems with single sourcing. Eur. J. Oper. Res. 113(3), 544–559 (1999)

    Article  MATH  Google Scholar 

  35. Daz, J.A., Fernndez, E.: A branch-and-price algorithm for the single source capacitated plant location problem. J. Oper. Res. Soc. 53(7), 728–740 (2002)

    Article  Google Scholar 

  36. Dolan, E.D., More, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Alberto Ceselli, Marcus Posta for their codes and test instances and Pasquale Avella for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Vasilyev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyev, I., Boccia, M. & Hanafi, S. An implementation of exact knapsack separation. J Glob Optim 66, 127–150 (2016). https://doi.org/10.1007/s10898-015-0294-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0294-3

Keywords

Navigation