Skip to main content
Log in

A study of singular spectrum analysis with global optimization techniques

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Singular spectrum analysis has recently become an attractive tool in a broad range of applications. Its main mechanism of alternating between rank reduction and Hankel projection to produce an approximation to a particular component of the original time series, however, deserves further mathematical justification. One paramount question to ask is how good an approximation that such a straightforward apparatus can provide when comparing to the absolute optimal solution. This paper reexamines this issue by exploiting a natural parametrization of a general Hankel matrix via its Vandermonde factorization. Such a formulation makes it possible to recast the notion of singular spectrum analysis as a semi-linear least squares problem over a compact feasible set, whence global optimization techniques can be employed to find the absolute best approximation. This framework might not be immediately suitable for practical application because global optimization is expectedly more expensive, but it does provide a theoretical baseline for comparison. As such, our empirical results indicate that the simpler SSA algorithm usually is amazingly sufficient as a handy tool for constructing exploratory model. The more complicated global methods could be used as an alternative of rigorous affirmative procedure for verifying or assessing the quality of approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. For the sake of characterizing the Vandemonde parameters more easily for the Hankel operator, which will be discussed subsequently, we begin the index with 0.

  2. We measure the strength by the logarithm unit dB. Recall that one decibel is ten times the base-10 logarithm of the ratio of the measured quantity to the reference level. Positive dB means that the signal is stronger than the noise; otherwise, the noise is stronger.

References

  1. Adamjan, V.M., Arov, D.Z., Kreĭn, M.G.: Infinite Hankel matrices and generalized Carathéodory-Fejér and I. Schur problems. Funkcional. Anal. i Priložen. 2(4), 1–17 (1968)

    Article  Google Scholar 

  2. Allen, M.R., Smith, L.A.: Monte Carlo SSA: Detecting irregular oscillations in the presence of coloured noise. J. Clim. 9, 3372–3404 (1996)

    Article  Google Scholar 

  3. Audet, C., Dennis Jr, J.E., Le Digabel, S.: Globalization strategies for mesh adaptive direct search. Comput. Optim. Appl. 46(2), 193–215 (2010)

    Article  Google Scholar 

  4. Auvergne, M.: Singular value analysis applied to phase space reconstruction of pulsating stars. Astron Astrophys 204, 341–348 (1988)

    Google Scholar 

  5. Boley, D.L., Luk, F.T., Vandevoorde, D.: Vandermonde factorization of a Hankel matrix. Scientific computing (Hong Kong, 1997), pp. 27–39. Springer, Singapore (1997)

  6. Bowden, C.M.: Boundedness of linear operators in the space \(\ell ^2\). Int. J. Quantum Chem. 2, 363–371 (1968)

    Article  Google Scholar 

  7. Brockwell, P.J., Davis, R.A.: Introduction to time series and forecasting, second edn. Springer Texts in Statistics. Springer, New York (2002). doi:10.1007/b97391. With 1 CD-ROM (Windows)

  8. Broomhead, D.S., King, G.P.: Extracting qualitative dynamics from experimental data. Physica D 20(2–3), 217–236 (1986)

    Article  Google Scholar 

  9. Chu, M.T., Funderlic, R.E., Plemmons, R.J.: Structured low rank approximation. Linear Algebra Appl. 366, 157–172 (2003). Special issue on structured matrices: analysis, algorithms and applications (Cortona, 2000)

    Google Scholar 

  10. Danilov, D., Zhigljavsky, A.E.: Principal components of time series: the ’caterpillar’ method. University of St. Petersburg Press. (In Russian) (1997)

  11. Elsner, J., Tsonis, A.: Singular Spectrum Analysis: A New Tool in Time Series Analysis. Language of Science. Plenum Press, NY (1996)

    Book  Google Scholar 

  12. Feldmann, S., Heinig, G.: Vandermonde factorization and canonical representations of block Hankel matrices. In: Proceedings of the Fourth Conference of the International Linear Algebra Society (Rotterdam, 1994), vol. 241/243, pp. 247–278 (1996)

  13. Fraedrich, K.: Estimating the dimensions of weather and climate attractors. J. Atmos. Sci. 43(5), 419–432 (1986)

    Article  Google Scholar 

  14. Francis, B.A.: A course in \(H_\infty \) control theory, Lecture Notes in Control and Information Sciences, vol. 88. Springer, Berlin (1987)

    Google Scholar 

  15. Gantmacher, F.R.: The theory of matrices. Vols. 1, 2. Translated by K.A. Hirsch. Chelsea Publishing Co., New York (1959)

  16. Ghil, M., Allen, R.M., Dettinger, M.D., Ide, K., Kondrashov, D., Man, M.E.: Advanced spectral methods for climatic time series. Rev. Geophys. 40(1), 3-1–3-41 (2002)

    Article  Google Scholar 

  17. Ghil, M., Taricco, C.: Advanced spectral analysis methods. In: Castagnoli G.C., Provenzale A. (eds.) Past and Present Variability of the Solar-Terrestrial System: Measurement, Data Analysis and Theoretical Models, International School of Physics Enrico Fermi, vol. 133, pp. 137–159. IOS Press, NY (1997)

  18. Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their \(L^{\infty }\)-error bounds. Int. J. Control 39(6), 1115–1193 (1984)

    Article  Google Scholar 

  19. Golyandina, N., Nekrutkin, V., Zhigljavsky, A.: Analysis of Time Series Structure: SSA and Related Techniques, Monographs on Statistics and Applied Probability, vol. 90. Chapman & Hall/CRC, Boca Raton, FL (2001)

    Google Scholar 

  20. Golyandina, N., Zhigljavsky, A.: Singular Spectrum Analysis for Time Series. Springer Briefs in Statistics. Springer, Berlin (2013)

    Book  Google Scholar 

  21. Groth, A., Ghil, M.: Multivariate singular spectrum analysis and the road to phase synchronization. Phys. Rev. E 84(036206), 1–10 (2011)

    Google Scholar 

  22. Hassani, H.: Singular spectrum analysis: Methodology and comparison. J. Data Sci. 5(2), 239–257 (2007)

    Google Scholar 

  23. Hassani, H.: Singular spectrum analysis based on the minimum variance estimator. Nonlinear Anal. Real World Appl. 11(3), 2065–2077 (2010)

    Article  Google Scholar 

  24. Hassani, H., Heravi, S., Zhigljavsky, A.: Forecasting european industrial production with singular spectrum analysis. Int. J. Forecast. 25(1), 103–118 (2009)

    Article  Google Scholar 

  25. Hassani, H., Mahmoudvand, R.: Multivariate singular spectrum analysis: A general view and new vector forecasting approach. Int. J. Energy Stat. 01(01), 55–83 (2013)

    Article  Google Scholar 

  26. Hassani, H., Mahmoudvand, R., Zokaei, M.: Separability and window length in singular spectrum analysis. C. R. Math. Acad. Sci. Paris 349(17–18), 987–990 (2011)

    Article  Google Scholar 

  27. Hassani, H., Mahmoudvand, R., Zokaei, M., Ghodsi, M.: On the separability between signal and noise in singular spectrum analysis. Fluct. Noise Lett. 11(02), 1250,014 (2012)

    Article  Google Scholar 

  28. Hassani, H., Soofi, A.S., Zhigljavsky, A.A.: Predicting daily exchange rate with singular spectrum analysis. Nonlinear Anal. Real World Appl. 11(3), 2023–2034 (2010)

    Article  Google Scholar 

  29. Hassani, H., Thomakos, D.: A review on singular spectrum analysis for economic and financial time series. Stat. Interface 3(3), 377–397 (2010)

    Article  Google Scholar 

  30. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms, 2nd edn. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ (2004). With 1 CD-ROM (Windows)

  31. Hendrix, E.M.T., G.-Tóth, B.: Introduction to Nonlinear and Global Optimization, Springer Optimization and Its Applications, vol. 37. Springer, New York (2010)

    Book  Google Scholar 

  32. Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecast. 22(4), 679–688 (2006)

    Article  Google Scholar 

  33. Iohvidov, I.S.: Hankel and Toeplitz matrices and forms. Birkhäuser Boston, Mass. (1982). Algebraic theory, Translated from the Russian by G. Philip A. Thijsse, With an introduction by I. Gohberg

  34. Kalman, D.: The generalized Vandermonde matrix. Math. Mag. 57(1), 15–21 (1984)

    Article  Google Scholar 

  35. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45(3), 385–482 (2003)

    Article  Google Scholar 

  36. van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Applications, Mathematics and its Applications, vol. 37. D. Reidel Publishing Co., Dordrecht (1987)

    Book  Google Scholar 

  37. Liberti, L., Maculan, N. (eds.): Global Optimization, Nonconvex Optimization and its Applications: From Theory to implementation, vol. 84. Springer, New York (2006)

    Google Scholar 

  38. Miller, K.S.: Complex linear least squares. SIAM Rev. 15, 706–726 (1973)

    Article  Google Scholar 

  39. Mineva, A., Popivanov, D.: Method for single-trial readiness potential identification, based on singular spectrum analysis. J. Neurosci. Methods 68(1), 91–99 (1996)

    Article  Google Scholar 

  40. Moskvina, V., Schmidt, K.M.: Approximate projectors in singular spectrum analysis. SIAM J. Matrix Anal. Appl 24(4), 932–942 (2003). electronic

    Article  Google Scholar 

  41. Moskvina, V., Zhigljavsky, A.: An algorithm based on singular spectrum analysis for change-point detection. Commun. Stat. Simul. Comput. 32(2), 319–352 (2003)

    Article  Google Scholar 

  42. Nehari, Z.: On bounded bilinear forms. Ann. of Math. (2) 65, 153–162 (1957)

    Article  Google Scholar 

  43. Pardalos, P.M., Coleman, T.F. (eds.) Lectures on global optimization, Fields Institute Communications, vol. 55. American Mathematical Society, Providence, RI (2009). In: Papers from the Workshop on Global Optimization: Methods and Applications held in Toronto, ON, May 11–12, 2007

  44. Pardalos, P.M., Romeijn, H.E. (eds.): Handbook of global optimization. Vol. 2, Nonconvex Optimization and its Applications, Vol. 62. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  45. Park, H., Zhang, L., Rosen, J.B.: Low rank approximation of a Hankel matrix by structured total least norm. BIT 39(4), 757–779 (1999)

    Article  Google Scholar 

  46. Patterson, K., Hassani, H., Heravi, S., Zhigljavsky, A.: Multivariate singular spectrum analysis for forecasting revisions to real-time data. J. Appl. Stat. 38(10), 2183–2211 (2011)

    Article  Google Scholar 

  47. Peller, V.V.: An excursion into the theory of Hankel operators. In: Holomorphic spaces (Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., vol. 33, pp. 65–120. Cambridge University Press, Cambridge (1998)

  48. Peller, V.V.: Hankel operators and their applications. Springer Monographs in Mathematics. Springer, New York (2003)

    Book  Google Scholar 

  49. Pintér, J.: Global Optimization in Action, Nonconvex Optimization and its Applications, vol. 6. Kluwer Academic Publishers, Dordrecht (1996). Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications

  50. Power, S.C.: Hankel operators on Hilbert space, Research Notes in Mathematics, vol. 64. Pitman (Advanced Publishing Program), Boston, Mass (1982)

    Google Scholar 

  51. Salamon, P., Sibani, P., Frost, R.: Facts, Conjectures, and Improvements for Simulated Annealing. SIAM Monographs on Mathematical Modeling and Computation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002)

    Book  Google Scholar 

  52. Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., Martí, R.: Scatter search and local NLP solvers: A multistart framework for global optimization. INFORMS J. Comput. 19(3), 328–340 (2007)

    Article  Google Scholar 

  53. Varadi, F., Ulrich, R.K., Bertello, L., Henney, C.J.: Searching for signal in noise by random-lag singular spectrum analysis. Astrophys. J. 526, 1052–1061 (1999)

    Article  Google Scholar 

  54. Vautard, R., Ghil, M.: Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D Nonlinear Phenom. 35(3), 395–424 (1989)

    Article  Google Scholar 

  55. Vautard, R., Yiou, P., Ghil, M.: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenom. 58(1–4), 95–126 (1992)

    Article  Google Scholar 

  56. Vose, M.D.: The Simple Genetic Algorithm. Complex Adaptive Systems. MIT Press, Cambridge, MA (1999). Foundations and theory, A Bradford Book

  57. Yiou, P., Sornette, D., Ghil, M.: Data-adaptive wavelets and multi-scale singular-spectrum analysis. Physica D 142(3–4), 254–290 (2000)

    Article  Google Scholar 

  58. Zhigljavsky, A.: Singular spectrum analysis for time series. In: Lovric M. (ed.) International Encyclopedia of Statistical Science, pp. 1335–1337. Springer (2011). See also http://www.cf.ac.uk/maths/subsites/zhigljavskyaa/r_ssa.html

  59. Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization, Springer Optimization and its Applications, vol. 9. Springer, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew M. Lin.

Additional information

Moody T. Chu’s research was supported in part by the National Science Foundation under grant DMS-1014666.

Matthew M. Lin’s research was supported in part by the National Science Council of Taiwan under grant NSC 101-2115-M-194-007-MY3.

Appendix

Appendix

In this section we explain how the gradient information can be derived for the global optimization code MultiStart.

Let the objective function (26) be rewritten in the form

$$\begin{aligned} f(\lambda _{1},\ldots ,\lambda _{d}) = \frac{1}{2} \langle \varLambda \mathcal {L}(\varLambda ;\mathbf {z}) - \mathbf {z}, \varLambda \mathcal {L}(\varLambda ;\mathbf {z}) - \mathbf {z} \rangle , \end{aligned}$$

with inner product \(\langle \mathbf {p},\mathbf {q} \rangle := \sum _{i} p_{i}\overline{q}_{i}\) for complex vectors. Employing polar coordinates \((\rho _{i},\theta _{i})\) when \(\lambda _{i}=\rho _{i}e^{\imath \theta _{i}}\) as variables in our global method, we identify \(\varLambda =\varLambda (\lambda _{1},\ldots ,\lambda _{d}) = \varLambda (\rho _{1},\ldots ,\rho _{d}, \theta _{1},\ldots ,\theta _{d})\). We now calculate the gradient of \(f\) with respect to the real variables \(\rho _{i}\) and \(\theta _{i}\).

Using the fact that \(\varLambda ^{*} \left( \varLambda \mathcal {L}(\varLambda ;\mathbf {z}) - \mathbf {z}\right) =0\), the action of the Fréchet derivative of \(f\) with respect to \(\varLambda \) at a complex matrix \(H\) is given by

$$\begin{aligned} \frac{\partial f}{\partial \varLambda }.H = \mathfrak {R}\left( \langle H, \left( \varLambda \mathcal {L}(\varLambda ;\mathbf {z}) - \mathbf {z}\right) \mathcal {L}(\varLambda ;\mathbf {z})^{*} \rangle \right) \!, \end{aligned}$$

where \(\mathfrak {R}\) stands for the real part of a complex-valued quantity and the same notation \(\langle \cdot ,\cdot \rangle \) denotes the generalization to the Frobenius inner product of complex matrices. On the other hand, the action of the Fréchet derivative of \(\varLambda \) with respect to variables \(\varvec{\rho }=[\rho _{1},\ldots ,\rho _{d}]\) and \(\varvec{\theta }=[\theta _{1},\ldots ,\theta _{d}]\) at vectors \(\mathbf {h}, \mathbf {k} \in \mathbb {R}^{d}\) can be expressed as

$$\begin{aligned} \frac{\partial \varLambda }{\partial \varvec{\rho }}.\mathbf {h}&= \underbrace{\mathrm {diag}\{0,1,2,\ldots ,2n-2\}}_{\Xi }\varLambda \mathrm {diag}\left\{ \varvec{\rho }\right\} ^{-1} \mathrm {diag}\{\mathbf {h}\}, \\ \frac{\partial \varLambda }{\partial \varvec{\theta }}.\mathbf {k}&= \imath \Xi \varLambda \mathrm {diag}\{\mathbf {k}\}, \end{aligned}$$

respectively. By the chain rule, we obtain the actions of the gradient of \(f\) as follows:

$$\begin{aligned} \frac{\partial f}{\partial \varvec{\rho }}.\mathbf {h} = \frac{\partial f}{\partial \varLambda }.\left( \frac{\partial \varLambda }{\partial \varvec{\rho }}.\mathbf {h}\right)&= \mathfrak {R}\left( \langle \Xi \varLambda \mathrm {diag}\left\{ \varvec{\rho }\right\} ^{-1} \mathrm {diag}\{\mathbf {h}\}, \left( \varLambda \mathcal {L}(\varLambda ;\mathbf {z}) - \mathbf {z}\right) \mathcal {L}(\varLambda ;\mathbf {z})^{*} \rangle \right) \!, \\&= \mathfrak {R}\left( \langle \mathrm {diag}\{\mathbf {h}\}, \mathrm {diag}\left\{ \varvec{\rho }\right\} ^{-1}\varLambda ^{*}\Xi \left( \varLambda \mathcal {L}(\varLambda ;\mathbf {z}) - \mathbf {z}\right) \mathcal {L}(\varLambda ;\mathbf {z})^{*} \rangle \right) \!, \\ \frac{\partial f}{\partial \varvec{\theta }}.\mathbf {k} = \frac{\partial f}{\partial \varLambda }.\left( \frac{\partial \varLambda }{\partial \varvec{\theta }}.\mathbf {k}\right)&= \mathfrak {R}\left( \langle \imath \Xi \varLambda \mathrm {diag}\{\mathbf {k}\}, \left( \varLambda \mathcal {L}(\varLambda ;\mathbf {z}) - \mathbf {z}\right) \mathcal {L}(\varLambda ;\mathbf {z})^{*} \rangle \right) \\&= \mathfrak {R}\left( \langle \mathrm {diag}\{\mathbf {k}\}, -\imath \varLambda ^{*}\Xi \left( \varLambda \mathcal {L}(\varLambda ;\mathbf {z}) - \mathbf {z}\right) \mathcal {L}(\varLambda ;\mathbf {z})^{*} \rangle \right) \end{aligned}$$

By the Riesz representation theorem, we see that the gradient of \(f\) can be expressed as

$$\begin{aligned} \frac{\partial f}{\partial \varvec{\rho }}&= \mathfrak {R}\left( \mathrm {diag}\left\{ \mathrm {diag}\left\{ \varvec{\rho }\right\} ^{-1}\varLambda ^{*}\Xi \left( \varLambda \mathcal {L}(\varLambda ;\mathbf {z}) - \mathbf {z}\right) \mathcal {L}(\varLambda ;\mathbf {z})^{*} \right\} \right) \!, \\ \frac{\partial f}{\partial \varvec{\theta }}&= \mathfrak {R}\left( \mathrm {diag}\left\{ -\imath \varLambda ^{*}\Xi \left( \varLambda \mathcal {L}(\varLambda ;\mathbf {z}) - \mathbf {z}\right) \mathcal {L}(\varLambda ;\mathbf {z})^{*} \right\} \right) \!. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, M.T., Lin, M.M. & Wang, L. A study of singular spectrum analysis with global optimization techniques. J Glob Optim 60, 551–574 (2014). https://doi.org/10.1007/s10898-013-0117-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-013-0117-3

Keywords

Navigation