Skip to main content
Log in

Parallel branch and bound for multidimensional scaling with city-block distances

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Multidimensional scaling is a technique for exploratory analysis of multidimensional data. The essential part of the technique is minimization of a multimodal function with unfavorable properties like invariants and non-differentiability. Recently a branch and bound algorithm for multidimensional scaling with city-block distances has been proposed for solution of medium-size problems exactly. The algorithm exploits piecewise quadratic structure of the objective function. In this paper a parallel version of the branch and bound algorithm for multidimensional scaling with city-block distances has been proposed and investigated. Parallel computing enabled solution of larger problems what was not feasible with the sequential version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Androulakis I.P., Floudas C.A. (1999) Distributed branch and bound algorithms for global optimization. In: Pardalos P.M. (eds) Parallel Processing of Discrete Problems. The IMA Volumes in Mathematics and its Applications vol. 106.. Springer, Berlin, pp 1–35

    Chapter  Google Scholar 

  2. Arabie P. (1991) Was Euclid an unnecessarily sophisticated psychologist. Psychometrika 56(4): 567–587. doi:10.1007/BF02294491

    Article  Google Scholar 

  3. Borg I., Groenen P.J.F. (2005) Modern Multidimensional Scaling: Theory and Applications, 2nd edn. Springer, New York

    Google Scholar 

  4. Brusco M.J. (2001) A simulated annealing heuristic for unidimensional and multidimensional (city-block) scaling of symmetric proximity matrices. J. Classif. 18(1): 3–33. doi:10.1007/s00357-001-0003-4

    Google Scholar 

  5. Brusco M.J., Stahl S. (2005) Branch-and-Bound Applications in Combinatorial Data Analysis. Springer, New York

    Google Scholar 

  6. Cox T.F., Cox M.A.A. (2001) Multidimensional Scaling, 2nd edn. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  7. D’Apuzzo M., Marino M., Migdalas A., Pardalos P.M., Toraldo G. (2006) Parallel computing in global optimization. In: Kontoghiorghes E.J. (eds) Handbook of Parallel Computing and Statistics. Chapman & Hall/CRC, Boca Raton, pp 225–258

    Google Scholar 

  8. de Leeuw J. (1984) Differentiability of Kruskal’s stress at a local minimum. Psychometrika 49(1): 111–113. doi:10.1007/BF02294209

    Article  Google Scholar 

  9. Ferreira, A., Pardalos, P.M. (eds) (1996) Solving Combinatorial Optimization Problems in Parallel: Methods and Techniques, Lecture Notes in Computer Science, vol 1054. Springer, Berlin

    Google Scholar 

  10. Gendron B., Crainic T.G. (1994) Parallel branch-and-bound algorithms: Survey and synthesis. Oper. Res. 42(6): 1042–1066

    Article  Google Scholar 

  11. Green P., Carmone F., Smith S. (1989) Multidimensional Scaling: Concepts and Applications. Allyn and Bacon, Boston

    Google Scholar 

  12. Groenen P.J.F., Heiser W.J., Meulman J.J. (1998) City-block scaling: smoothing strategies for avoiding local minima. In: Balderjahn I., Mathar R., Schader M. (eds) Classification, Data Analysis, and Data Highways. Springer, Berlin, pp 46–53

    Chapter  Google Scholar 

  13. Groenen P.J.F., Heiser W.J., Meulman J.J. (1999) Global optimization in least-squares multidimensional scaling by distance smoothing. J. Classif. 16(2): 225–254. doi:10.1007/s003579900055

    Article  Google Scholar 

  14. Groenen P.J.F., Mathar R., Heiser W.J. (1995) The majorization approach to multidimensional scaling for Minkowski distances. J. Classif. 12(1): 3–19. doi:10.1007/BF01202265

    Article  Google Scholar 

  15. Hubert L., Arabie P., Hesson-Mcinnis M. (1992) Multidimensional scaling in the city-block metric: a combinatorial approach. J. Classif. 9(2): 211–236. doi:10.1007/BF02621407

    Article  Google Scholar 

  16. Hwa J., Graham R.M., Perez D.M. (1995) Identification of critical determinants of α1-adrenergic receptor subtype selective agonist binding. J. Biol. Chem. 270(39): 23189–23195

    Article  Google Scholar 

  17. Leung P.L., Lau K. (2004) Estimating the city-block two-dimensional scaling model with simulated annealing. Eur. J. Oper. Res. 158(2): 518–524. doi:10.1016/S0377-2217(03)00357-6

    Article  Google Scholar 

  18. Migdalas, A., Pardalos, P.M., Storøy, S. (eds) (1997) Parallel Computing in Optimization, Applied Optimization, vol. 7. Kluwer, Dordrecht

    Google Scholar 

  19. Pardalos, P.M. (eds) (1999) Parallel Processing of Discrete Problems, The IMA Volumes in Mathematics and its Applications, vol. 106. springer, Berlin

    Google Scholar 

  20. Rayward-Smith V.J., Rush S.A., McKeown G.P. (1993) Efficiency considerations in the implementation of parallel branch-and-bound. Ann. Oper. Res. 43(2): 123–145. doi:10.1007/BF02024489

    Article  Google Scholar 

  21. Ruuskanen J.O., Laurila J., Xhaard H., Rantanen V.V., Vuoriluoto K., Wurster S., Marjamäki A., Vainio M., Johnson M.S., Scheinin M. (2005) Conserved structural, pharmacological and functional properties among the three human and five zebrafish α2-adrenoceptors. Br. J. Pharmacol. 144(2): 165–177. doi:10.1038/sj.bjp.0706057

    Article  Google Scholar 

  22. Uhlén S., Dambrova M., Näsman J., Schiöth H.B., Gu Y., Wikberg-Matsson A., Wikberg J.E.S. (1998) [3h]rs79948-197 binding to human, rat, guinea pig and pig α2A-, α2B- and α2C-adrenoceptors. comparison with mk912, rx821002, rauwolscine and yohimbine. Eur. J. Pharmacol. 343(1): 93–101

    Article  Google Scholar 

  23. Vera J.F., Heiser W.J., Murillo A. (2007) Global optimization in any Minkowski metric: a permutation-translation simulated annealing algorithm for multidimensional scaling. J. Classif. 24(2): 277–301. doi:10.1007/s00357-007-0020-1

    Article  Google Scholar 

  24. Žilinskas A., Žilinskas J. (2006) Parallel hybrid algorithm for global optimization of problems occurring in MDS based visualization. Comput. Math. Appl. 52(1-2): 211–224. doi:10.1016/j.camwa.2006.08.016

    Article  Google Scholar 

  25. Žilinskas A., Žilinskas J. (2007) Two level minimization in multidimensional scaling. J. Global Optim. 38(4): 581–596. doi:10.1007/s10898-006-9097-x

    Article  Google Scholar 

  26. Žilinskas A., Žilinskas J. (2008) A hybrid method for multidimensional scaling using city-block distances. Math. Methods Oper. Res. 68(3): 429–443. doi:10.1007/s00186-008-0238-5

    Article  Google Scholar 

  27. Žilinskas A., Žilinskas J. (2009) Branch and bound algorithm for multidimensional scaling with city-block metric. J. Global Optim. 43(2-3): 357–372. doi:10.1007/s10898-008-9306-x

    Article  Google Scholar 

  28. Žilinskas J. (2006) Multidimensional scaling in protein and pharmacological sciences. In: Bogle I.D.L., Žilinskas J. (eds) Computer Aided Methods in Optimal Design and Operations. World Scientific, Singapore, pp 139–148

    Chapter  Google Scholar 

  29. Žilinskas J. (2007) Reducing of search space of multidimensional scaling problems with data exposing symmetries. Inform. Technol. Control 36(4): 377–382

    Google Scholar 

  30. Žilinskas J. (2008) On dimensionality of embedding space in multidimensional scaling. Informatica 19(3): 447–460

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Žilinskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žilinskas, J. Parallel branch and bound for multidimensional scaling with city-block distances. J Glob Optim 54, 261–274 (2012). https://doi.org/10.1007/s10898-010-9624-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9624-7

Keywords

Navigation