Skip to main content
Log in

Unveiling the Radiative Electron-Hole Recombination of MoS2 Nanostructures at Extreme pH Conditions

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Nanostructures of MoS2 are in wide research for optoelectronic, energy and biological applications. Opto-electronic and biological applications requires the tuning of photoluminescence properties of MoS2 nanostructures. In this article, nanosized MoS2 is hydrothermally synthesized, and photoluminescence at extreme pH conditions (pH 1 and 13) is examined. As the photoluminescence gives a key to probe the radiative electron-hole recombination, here, photoluminescence emissions are used as an indicator to suggest the pattern of electron-hole recombination in the material at extreme pH conditions. Raman spectroscopy, dynamic light scattering, Scanning electron microscopic image and energy dispersive x-ray analysis are done for material confirmation. At pH 1 and 13 as-synthesized nanostructured MoS2 exhibited both upconversion and downconversion photoluminescence. The intensity of photoluminescence is varied with respect to pH. Excitation-dependent photoluminescence mechanisms and preliminary understanding on the ratio of quantum yields and life span of excited state of as-synthesized nanostructured MoS2 are unveiled here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are available in the link https://drive.google.com/drive/folders/1z-MXRs6i2f6nac7smZP4Bzg1u4T5WIvh?usp=drive_link.

References

  1. Guo Y, Li J (2020) MoS2 quantum dots: synthesis, properties and biological applications. Mater Sci Eng C 109:110511

    Article  CAS  Google Scholar 

  2. Yadav V, Roy S, Singh P, Khan Z, Jaiswal A (2019) 2D MoS2-based nanomaterials for therapeutic, bioimaging, and biosensing applications. Small 15:1803706

    Article  Google Scholar 

  3. Dong H, Tang S, Hao Y, Yu H, Dai W, Zhao G et al (2016) Fluorescent MoS2 quantum dots: ultrasonic preparation, up-conversion and down-conversion bioimaging, and photodynamic therapy. ACS Appl Mater Interfaces 8:3107–3114

    Article  CAS  PubMed  Google Scholar 

  4. Singh E, Singh P, Kim KS, Yeom GY, Nalwa HS (2019) Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics. ACS Appl Mater Interfaces 11:11061–11105

    Article  CAS  PubMed  Google Scholar 

  5. Choi MS, Qu D, Lee D, Liu X, Watanabe K, Taniguchi T et al (2014) Lateral MoS2 p–n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano 8:9332–9340

    Article  CAS  PubMed  Google Scholar 

  6. Lee J, Dak P, Lee Y, Park H, Choi W, Alam MA et al (2014) Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci Rep 4:7352

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu B, Li C, Chen G, Liu B, Deng X, Wei Y et al (2017) Synthesis and optimization of MoS2@ Fe3O4-ICG/Pt (IV) nanoflowers for MR/IR/PA bioimaging and combined PTT/PDT/chemotherapy triggered by 808 nm laser. Adv Sci 4:1600540

    Article  Google Scholar 

  8. Liu Y, Zhang Y, Zhang W, Wang X, Sun Y, Huang Y et al (2021) Ratiometric fluorescent sensor based on MoS2 QDs and AuNCs for determination and bioimaging of alkaline phosphatase. Spectrochim Acta A 262:120087

    Article  CAS  Google Scholar 

  9. Tezuka S, Seki T, Ohnishi T, Noguchi H, Tanaka M, Okochi M et al (2020) In situ bioimaging of Lactobacillus by photoluminescence of MoS2. 2D Mater 7:024002

    Article  CAS  Google Scholar 

  10. Liu T, Wang C, Gu X, Gong H, Cheng L, Shi X et al (2014) Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv Mater 26:3433–3440

    Article  PubMed  Google Scholar 

  11. Yin W, Yan L, Yu J, Tian G, Zhou L, Zheng X et al (2014) High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 8:6922–6933

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Wu J, Williams GR, Niu S, Qian Q, Zhu LM (2019) Functionalized MoS2-nanosheets for targeted drug delivery and chemo-photothermal therapy. Colloids Surf B 173:101–108

    Article  CAS  Google Scholar 

  13. Tsai ML, Su SH, Chang JK, Tsai DS, Chen CH, Wu CI et al (2014) Monolayer MoS2 heterojunction solar cells. ACS Nano 8:8317–8322

    Article  CAS  PubMed  Google Scholar 

  14. Singh E, Kim KS, Yeom GY, Nalwa HS (2017) Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells. ACS Appl Mater Interfaces 9:3223–3245

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z, Lin J, Gao J, Wang Q (2016) Two optically active molybdenum disulfide quantum dots as tetracycline sensors. Mater Chem Phys 178:82–87

    Article  ADS  CAS  Google Scholar 

  16. Fahimi-Kashani N, Rashti A, Hormozi-Nezhad MR, Mahdavi V (2017) MoS2 quantum-dots as a label-free fluorescent nanoprobe for the highly selective detection of methyl parathion pesticide. Anal Methods 9:716–723

    Article  CAS  Google Scholar 

  17. Zhuo S, Shao M, Lee ST (2012) Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano 6:1059–1064

    Article  CAS  PubMed  Google Scholar 

  18. Sunitha AP, Praveen P, Jayaraj MK, Saji KJ (2018) Upconversion and downconversion photoluminescence and optical limiting in colloidal MoS2 nanostructures prepared by ultrasonication. Opt Mater 85:61–70

    Article  ADS  CAS  Google Scholar 

  19. Ghosh S, Chiang WC, Fakhri MY, Wu CT, Chen RS, Chattopadhyay S (2020) Ultrasensitive broadband photodetector using electrostatically conjugated MoS2-upconversion nanoparticle nanocomposite. Nano Energy 67:104258

    Article  CAS  Google Scholar 

  20. Ann Mary KA, Johns N, Sunitha AP (2021) Esteso M A (ed) Optical and molecular physics: theoretical principles and experimental methods CRC Press pp 97

  21. Ma L, Xu L, Zhou X, Xu X, Luo J, Zhang L (2016) Sn-doped few-layer MoS2/graphene hybrids with rich active sites and their enhanced catalytic performance for hydrogen generation. Colloids Surf a 509:140–148

    Article  CAS  Google Scholar 

  22. Hou C, Hu B, Zhu J (2018) Photocatalytic degradation of methylene blue over TiO2 pretreated with varying concentrations of NaOH. Catalysts 8:575

    Article  Google Scholar 

  23. Li Y et al (2021) Unraveling the synergetic mechanism of physisorption and chemisorption in laser-irradiated monolayer WS2. Nano Res 14:4274–4280

    Article  ADS  CAS  Google Scholar 

  24. Feng J et al (2022) Engineering Relaxation-paths of C-Exciton for constructing Band nesting bypass in WS2 monolayer. Nano Lett 22(9):3699–3706

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Mehta A, Pooja D, Thakur A, Basu S (2017) Enhanced photocatalytic water splitting by gold carbon dot core shell nanocatalyst under visible/sunlight. New J Chem 41:4573–4581

    Article  CAS  Google Scholar 

  26. Dariani RS, Esmaeili A, Mortezaali A, Dehghanpour S, Dariani RS et al (2016) Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik 127:7143–7154

    Article  ADS  CAS  Google Scholar 

  27. Huang H et al (2015) Water-soluble monolayer molybdenum disulfide quantum dots with upconversion fluorescence. Part Part Syst Charact 32(1):72–79

    Article  CAS  Google Scholar 

  28. Kharlampieva E et al (2010) pH-responsive photoluminescent LbL hydrogels with confined quantum dots. Soft Matter 6(4):800–807

    Article  ADS  CAS  Google Scholar 

  29. Cannas M et al (2018) Enhancing the luminescence efficiency of silicon-nanocrystals by interaction with H+ ions. Phys Chem Chem Phys 20(15):10445–10449

    Article  CAS  PubMed  Google Scholar 

  30. Quirino WG et al (2005) Effects of non-radiative processes on the infrared luminescence of Yb3 + doped glasses. Journal of non-crystalline solids 351.24-26 : 2042–2046

  31. Kumar D, Singh B, Kumar R, Kumar M, Kumar P (2021) Davydov splitting, resonance effect and phonon dynamics in chemical vapor deposition grown layered MoS2. Nanotechnology 32:285705

    Article  CAS  Google Scholar 

  32. Frey GL, Tenne R, Matthews MJ, Dresselhaus MS, Dresselhaus G (1999) Raman and resonance Raman investigation of MoS2 nanoparticles. Phys Rev B 60:2883

    Article  ADS  CAS  Google Scholar 

  33. Hua W, Sun HH, Xu F, Wang JG (2020) A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met 39:335–351

    Article  CAS  Google Scholar 

  34. Saha A, Paul A, Srivastava DN, Panda AB (2020) Exfoliated colloidal MoS2 nanosheet with predominantly 1T phase for electrocatalytic hydrogen production. Int J Hydrog Energy 45:18645–18656

    Article  CAS  Google Scholar 

  35. Gfroerer TH (2000) Meyers R A (ed) photoluminescence in analysis of surfaces and interfaces- encyclopedia of analytical chemistry. John Wiley & sons Ltd, p 9209

  36. Debata S, Banerjee S, Sharma PK (2019) Marigold shaped N-rGO-MoS2-Ni (OH)2 nanocomposite as a bifunctional electrocatalyst for the promotion of overall water splitting in alkaline medium. Electrochim Acta 303:257–267

    Article  CAS  Google Scholar 

  37. Richards BS, Hudry D, Busko D, Turshatov A, Howard IA (2021) Photon upconversion for photovoltaics and photocatalysis: a critical review: focus review. Chem Rev 121:9165–9195

    Article  CAS  PubMed  Google Scholar 

  38. Zhai Y, Yang X, Wang F, Li Z, Ding G, Qiu Z et al (2018) Infrared-sensitive memory based on direct‐grown MoS2–upconversion‐nanoparticle heterostructure. Adv Mater 30:1803563

    Article  Google Scholar 

  39. Loo JFC, Chien YH, Yin F, Kong SK, Ho HP, Yong KT (2019) Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord Chem Rev 400:213042

    Article  CAS  Google Scholar 

  40. Richards BS (2006) Luminescent layers for enhanced silicon solar cell performance: down-conversion. Sol Energy Mater Sol Cells 90:1189–1207

    Article  CAS  Google Scholar 

  41. Saleh HD, Vezzoli S, Caspani L, Branny A, Kumar S, Gerardo BD et al (2018) Towards spontaneous parametric down conversion from monolayer MoS2. Sci Rep 8:3862

    Article  ADS  Google Scholar 

  42. Sunitha AP, Hajara P, Shaji M, Jayaraj MK, Saji KJ (2018) Luminescent MoS2 quantum dots with reverse saturable absorption prepared by pulsed laser ablation. J Lumin 203:313

    Article  CAS  Google Scholar 

  43. Zhang W, Matsuda K, Miyauchi Y (2018) pH-dependent photoluminescence properties of monolayer transition-metal dichalcogenides immersed in an aqueous solution. J Phys Chem C 122:13175–13181

    Article  CAS  Google Scholar 

  44. Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications. Wiley

  45. Würth C, Geißler D, Behnke T, Kaiser M, Resch-Genger U (2015) Critical review of the determination of photoluminescence quantum yields of luminescent reporters. Anal Bioanal Chem 407:59–78

    Article  PubMed  Google Scholar 

  46. Mishra H, Umrao S, Singh J, Srivastava RK, Ali R, Misra A et al (2017) pH dependent optical switching and fluorescence modulation of molybdenum sulfide quantum dots. Adv Opt Mater 5:1601021

    Article  Google Scholar 

  47. Huang H, Du C, Shi H, Feng X, Li J, Tan Y et al (2015) Water-soluble monolayer molybdenum disulfide quantum dots with upconversion fluorescence. Part Part Syst Charact 32:72–79

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge TIFR, Hyderabad for all the support and characterization facilities provided. Authors would like to acknowledge Dr. K. J Saji, Associate Professor, International School of Photonics, CUSAT, Kochin-22, Kerala for providing characterization facilities. We also acknowledge DST-FIST, Govt Victoria College, Palakkad for all the support and providing material synthesising facilities.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Data collection, analysis, experimentation, investigation and draft preparation were performed by Nayana. K Conceptualization, manuscript structuring and correction, editing and supervision were done by Sunitha. A. P.

Corresponding author

Correspondence to Sunitha A. P..

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

This work does not include any ethical violations or involve any theme that needs ethical approval.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

K., N., A. P., S. Unveiling the Radiative Electron-Hole Recombination of MoS2 Nanostructures at Extreme pH Conditions. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03616-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03616-w

Keywords

Navigation