Skip to main content
Log in

Synthesis of Fluorescent Pyrazoline Sensors as Versatile Tool for Zinc ion Detection: A Mini-Review

  • Review
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Zinc ions are one of the 2nd most abundant mineral after iron and it is important for immune system, enzymatic catalysis, DNA synthesis, and maintaining structural integrity in humans. But, monitoring the Zn levels in human body poses more challenges. This review paper investigates (paper from 2010 to 2023) the synthesis of pyrazoline derivatives by different methods, including conventional methods and green chemistry protocol. These Pyrazoline derivatives highlighted for their potential application as chemo-sensor for Zn2+ ions recognition. Pyrazoline compounds exhibit excellent sensitivity & selectivity and emitting blue-light with high quantum yields and electroluminescence, along with a superior limit of detection. These derivatives are stable bioactive molecule, with well-known diverse biological activities. This review not only gives valuable insights into the essential role of Zinc in human physiology but also provides a practical method for accurate Zinc detection in various samples. Which holds the potential for advancements in health diagnostics and environmental monitoring. Because of their significant biological application and selectivity as sensors, researchers have much more attention to prepare green environmentally-friendly pyrazoline derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13

Similar content being viewed by others

Data Availability

Data available in a public (institutional, general or subject specifc) repository that issues datasets with DOIs (non-mandated deposition).

References

  1. Khan SA (2020) Multi-step synthesis, photophysical and physicochemical investigation of novel pyrazoline a heterocyclic D-π-A chromophore as a fluorescent chemosensor for the detection of Fe3+ metal ion. J Mol Struct 20:30409–30419

    Google Scholar 

  2. Mitra A, Hinge VK, Mittal A, Bhakta S, Guionneau P, Rao CP (2011) A zinc-sensing glucose-based naphthyl imino conjugate as a detecting agent for inorganic and organic phosphates. Including DNA Chem Eur J 17(29):8044–8047. https://doi.org/10.1002/chem.201100734

    Article  CAS  PubMed  Google Scholar 

  3. Luo JW, Zhao B, Zhang SL, Jia FY, Liu J (2020) Fluorescent probe based on morpholine derivatives for Fe3+/Cu2+. Inorg Chem 36:1845–1852

    CAS  Google Scholar 

  4. Yin GX, Yu a T, Gan YB, Zhou L, Liu ML, Zhang YY, Li HT, Yin P, Yao SZ (2020) A novel fluorescent probe with dual-sites for simultaneously monitoring metabolisms of cysteine in living cells and zebrafishes. Spectrochim Acta Part A 241:118602

    Article  CAS  Google Scholar 

  5. Zhou ZL, Li YQ, Su W, Gu B, Xu H, Wu CY, Yin P, Li HT, Zhang YY (2019) A dualsignal colorimetric and near-infrared fluorescence probe for the detection of exogenous and endogenous hydrogen peroxide in living cells. Sensor Actuators B Chem 280:120–128

    Article  CAS  Google Scholar 

  6. Gan YB, Yin GX, Yu T, Zhang YY, Li HT, Yi P (2020) A novel fluorescent probe for selective imaging of cellular cysteine with large Stokes shift and high quantum yield. Talanta 210:120612

    Article  CAS  PubMed  Google Scholar 

  7. Tomat E, Lippard SJ (2010) Imaging mobile zinc in biology. Curr Opin Chem Bio 14(2):225–230. https://doi.org/10.1016/j.cbpa.2009.12.010

    Article  CAS  Google Scholar 

  8. Rosello TP, Anderson CT, Ling C, Lippard SJ, Tzounopoulos T (2015) Tonic zinc inhibits spontaneous firing in dorsal cochlear nucleus principal neurons by enhancing glycinergic neurotransmission. Neurobiol Dis 81:14–19. https://doi.org/10.1016/j.nbd.2015.03.012

    Article  CAS  Google Scholar 

  9. Kandasamy S, Subramani P, Kannupal S, Jayaraj JM, Prasanth G, Srinivasan K, Rajakannan V, Vilwanathan R (2020) Design and synthesis of imidazole based zinc binding groups as novel small molecule inhibitors targeting histone deacetylase enzymes in lung cancer. J Mol Struc 1214:128177. https://doi.org/10.1016/j.molstruc.2020.128177

    Article  CAS  Google Scholar 

  10. Yuan L, Lin WY (2013) Far-redtonear infraredanalyte-responsivefluorescentprobes based on organic fluorophore platforms for fluorescence imaging. Chem Soc Rev 42:622–661

    Article  CAS  PubMed  Google Scholar 

  11. Hayat F, Rauf N, Rehman Z, Gariepy FB (2022) Exploring the hydrogen-bonding interactions in the piperazinylethanol substituted homoleptic zinc(II)-dithiocarbamate and its diimine 2,2′-bipyridyl and 1,10-phenanthroline adducts, and their DNA binding studies. J Mol Struc 1263:133106. https://doi.org/10.1016/j.molstruc.2022.133106

    Article  CAS  Google Scholar 

  12. Singh JK, Attikum HV (2021) DNA double-strand break repair: putting zinc fingers on the sore spot. Semin Cell Dev Biol 113:65–74. https://doi.org/10.1016/j.semcdb.2020.09.003

    Article  CAS  PubMed  Google Scholar 

  13. Savitikadi P, Palika R, Pullakhandam R, Reddy GB, Reddy SS (2023) Dietary zinc inadequacy affects neurotrophic factors and proteostasis in the rat brain. Nutr Res 116:80–88. https://doi.org/10.1016/j.nutres.2023.06.002

    Article  CAS  PubMed  Google Scholar 

  14. Wang L, Duan Z, Liang M, Wang C, Liang T, Sun L, Yan C, Li Q, Liang T (2022) A pivotal role of selective autophagy in mitochondrial quality control: implications for zinc oxide nanoparticles induced neurotoxicity. Chem Biol Interact 363:110003. https://doi.org/10.1016/j.cbi.2022.110003

    Article  CAS  Google Scholar 

  15. Wu DD, Jin S, Cheng RX, Cai WJ, Xue WL, Zhang QQ, Yang LJ, Zhu Q, Li MY, Lin G, Wang YZ, Mu XP, Wang Y, Zhang IY, Zhang Q, Chen Y, Cai SY, Tan B, Li Y, Chen YQ, Zhu YC (2023) Hydrogen sulfide functions as a micro-modulator bound at the copper active site of Cu/Zn-SOD to regulate the catalytic activity of the enzyme. Cell Rep 42(7):112750. https://doi.org/10.1016/j.celrep.2023.112750

    Article  CAS  PubMed  Google Scholar 

  16. Ryu MS, Aydemir TB, Marriott BP, Birt DF, Stallings VA, Yates AA (2020) Zinc. Present Knowledge in Nutrition, 11th edn. Wiley-Blackwell, Cambridge, Massachusetts, pp 393–408

    Chapter  Google Scholar 

  17. Viles JH (2012) Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer’s, Parkinson’s and prion diseases. Coord Chem Rev 256(19–20):2271–2284. https://doi.org/10.1016/j.ccr.2012.05.003

    Article  CAS  Google Scholar 

  18. Zhang X, Wang K, Ren XL, Zhang MD, Wu KN, Wu H, Chu ZW, Liu SS, Jiang XX, Zhu JH, Wu HM (2023) Inc Deficiency exacerbates behavioral impediments and dopaminergic neuron degeneration in a mouse model of Parkinson disease. J Nutr 153(1):167–175. https://doi.org/10.1016/j.tjnut.2022.11.006

    Article  CAS  PubMed  Google Scholar 

  19. Alhillawi ZH, Al-Hakeim HK, Moustafa SR, Maes M (2021) Increased zinc and albumin but lowered copper in children with transfusion-dependent thalassemia. J Trace Elm Med Biol 65:126713. https://doi.org/10.1016/j.jtemb.2021.126713

    Article  CAS  Google Scholar 

  20. Matter RM, Elbarbary NS, Ismail EAR, Darwish YW, Nada AS, Banoub VP (2020) Zinc supplementation improves glucose homeostasis in patients with β-thalassemia major complicated with diabetes mellitus: A randomized controlled trial. Nutrition 73:110702. https://doi.org/10.1016/j.nut.2019.110702

    Article  CAS  PubMed  Google Scholar 

  21. Lai J, Moxey A, Nowak G, Vashum K, Bailey K, McEvoy M (2012) The efficacy of zinc supplementation in depression: systematic review of randomised controlled trials. J Affect Disord 136(1–2):e31–e39. https://doi.org/10.1016/j.jad.2011.06.022

    Article  CAS  PubMed  Google Scholar 

  22. Mohammed HS, Khadrawy YA (2021) Electrophysiological and neurochemical evaluation of the adverse effects of REM sleep deprivation and epileptic seizures on rat’s brain. Life Sci 273:119303. https://doi.org/10.1016/j.lfs.2021.119303

    Article  CAS  PubMed  Google Scholar 

  23. McAllum EJ, Roberts BR, Hickey JL, Dang TN, Grubman A, Donnelly PS, Liddell JR, White AR, Crouch PJ (2015) ZnII(atsm) is protective in Amyotrophic Lateral Sclerosis model mice via a copper delivery mechanism. Neurobiol Dis 81:20–24. https://doi.org/10.1016/j.nbd.2015.02.023

    Article  CAS  PubMed  Google Scholar 

  24. Dong W, Qi Z, Liang J, Shi W, Zhao Y, Luo Y, Ji X, Liu KJ (2015) Reduction of zinc accumulation in mitochondria contributes to decreased cerebral ischemic injury by normobaric hyperoxia treatment in an experimental stroke model. Exp Neurol 272:181–189. https://doi.org/10.1016/j.expneurol.2015.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Puzio M, Moreton N, O’Connor JJ (2022) Neuroprotective strategies for acute ischemic Stroke: targeting oxidative stress and prolyl hydroxylase domain inhibition in synaptic signalling. Brain Disorders 5:100030. https://doi.org/10.1016/j.dscb.2022.100030

    Article  CAS  Google Scholar 

  26. Naskara B, Modaka R, Maitia DK, Drewb MG, Bauzac A (2017) A Schiff base platform: structures, sensing of zn(ii) and PPi in aqueous medium and anticancer activity. Dalton T 46:9498–9510

    Article  Google Scholar 

  27. Du K, Niu SZ, Qiao L, Dou YD, Zhu Q, Chen XZ (2017) A highly selective ratiometric fluorescent probe for the cascade detection of Zn2+ and H2PO4 and its application in living cell imaging. RSC Adv 7:40615–40620

    Article  ADS  CAS  Google Scholar 

  28. Jia J, Cheng GJ, Wu A, Luana SJ (2017) Novel imprinted polyethyleneimine nanofluorescent probes with controllable selectivity for recognizing and adsorbing metal ions. RSC Adv 7:36048–36055

    Article  ADS  CAS  Google Scholar 

  29. Kloubert V, Wessels I, Wolf J, Blaabjerg K, Janssens V, Hapala J, Wager W, Rink L (2020) Zinc deficiency leads to reduced interleukin-2 production by active gene silencing due to enhanced CREMα expression in T cells. Clin Nutr 1–51. https://doi.org/10.1016/j.clnu.2020.10.052

  30. Sheikh AA, Aggarwal A, Aarif O (2016) Effect of in vitro zinc supplementation on HSPs expression and interleukin 10 production in heat treated peripheral blood mononuclear cells of transition Sahiwal and Karan fries cows. J Therm Biol 56:68–76. https://doi.org/10.1016/j.jtherbio.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  31. Mohajer F, Kiadeh FSH, Ziarani GM, Zandiyeh M, Badiei A (2022) Varma. Greener assembly of Pyrano[3,4-b]pyran derivative as a novel Hg2+ ion chemosensor. Opt Materials: X 15:100182. https://doi.org/10.1016/j.omx.2022.100182

    Article  CAS  Google Scholar 

  32. Ding Y, Zhao C, Zhang P, Chen Y, Xie J, Song W, Liu Z, Liu G, Zheng X (2023) A dual-functional chemosensor based on acylhydrazone derivative for rapid detection of zn(II) and mg(II): spectral properties, recognition mechanism and application studies. Arab J Chem 16(4):104603. https://doi.org/10.1016/j.arabjc.2023.104603

    Article  CAS  Google Scholar 

  33. Kim JH, Noh JY, Hwang IH, Kang J, Kim J, Kim C (2013) An anthracene-based fluorescent chemosensor for Zn2+. Tetrahedron Lett 54(19):2415–2418. https://doi.org/10.1016/j.tetlet.2013.02.102

    Article  CAS  Google Scholar 

  34. Maity D, Govindaraju T (2012) A differentially selective sensor with fluorescence turn-on response to Zn2+ and dual-mode ratiometric response to Al3+ in aqueous media. Chem Commun 48(7):1039–1041. https://doi.org/10.1039/c1cc16064h

    Article  CAS  Google Scholar 

  35. Boens N, Leen V, Dehaen W (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41(3):1130–1172. https://doi.org/10.1039/c1cs15132k

    Article  CAS  PubMed  Google Scholar 

  36. Alam MZ, Khan SA (2023) A review on rhodamine-based Schiff base derivatives: synthesis and fluorescent chemo-sensors behaviour for detection of Fe. And Cu2+ ions J Coord Chem 76(3–4):371–402. https://doi.org/10.1080/00958972.2023.2183852

    Article  CAS  Google Scholar 

  37. Yuan Y, Wang Y, Mu Y, Xu M, Fu S, Kong L, Li Y (2020) Synthesis of aza-eight-Membered Ring-Fused Indolines initiated by Zn-Catalyzed C2 alkylation of Indoles and subsequent base-promoted Ring Expansion. Org Lett. https://doi.org/10.1021/acs.orglett.0c02307

    Article  PubMed  Google Scholar 

  38. Huang XC, Jiang YX, Han ZJ, Yong W, Huang QX, Shi WX, Chen XR, Kong JJ (2023) Wu thiazolothiazole based Zn(II) metal – organic framework with multi-responsive fluorescent sensing toward Al3+ and oxoacid anions in an aqueous solution. J Mol Struct 1289:135897. https://doi.org/10.1016/j.molstruc.2023.135897

    Article  CAS  Google Scholar 

  39. Yin S, Zhang J, Feng H, Zhao Z, Xu L, Qiu H, Tang B (2012) Zn2+-selective fluorescent turn-on chemosensor based on terpyridine-substituted siloles. Dyes Pigm 95(2):174–179. https://doi.org/10.1016/j.dyepig.2012.04.007

    Article  CAS  Google Scholar 

  40. Lee S, Lee JH, Pradhan T, Lim CS, Cho BR, Bhuniya S, Kim JS (2011) Fluorescent turn-on Zn2+ sensing in aqueous and cellular media. Sens Actuators B Chem 160(1):1489–1493. https://doi.org/10.1016/j.snb.2011.07.06

    Article  CAS  Google Scholar 

  41. Li W, Nie Z, He K, Xu X, Li Y, Huang Y, Yao S (2011) Simple, rapid and label-free colorimetric assay for Zn2+ based on unmodified gold nanoparticles and specific Zn2+ binding peptide. Chem Commun 47(15):4412. https://doi.org/10.1039/c0cc05727d

    Article  CAS  Google Scholar 

  42. Yang C, Trinh QT, Wang X et al (2015) Crystallization-induced red emission of a facilely synthesized biodegradable indigo derivative. Chem Commun 51:3375–3378. https://doi.org/10.1039/C4CC09540E

    Article  CAS  Google Scholar 

  43. Kasirajan G, Krishnaswamy V, Raju N, Mahalingam M, Sadasivam M, Subramaniam MP, Ramasamy S (2017) New pyrazolo-quinoline scaffold as a reversible colorimetric fluorescent probe for selective detection of Zn2+ ions and its imaging in live cells. J Photochem Photobiol A 341:136–145. https://doi.org/10.1016/j.jphotochem.2017.03.035

    Article  CAS  Google Scholar 

  44. Khan SA, Alam MZ, Mohasin M et al (2023) Ultrasound-assisted synthesis of Chalcone: a highly sensitive and selective fluorescent Chemosensor for the detection of Fe3+ in aqueous media. J Fluoresc 1–6. https://doi.org/10.1007/s10895-023-03317-w

  45. Zhang TT, Wang FW, Li MM, Liu JT, Miao JY, Zhao BX (2013) A simple pyrazoline-based fluorescent probe for Zn2 + in aqueous solution and imaging in living neuron cells. Sens Actuators B Chem 186:755–760. https://doi.org/10.1016/j.snb.2013.06.085

    Article  CAS  Google Scholar 

  46. Ciupa A, Mahon MF, De Bank PA, Caggiano L (2012) Simple pyrazoline and pyrazole turn on fluorescent sensors selective for Cd2+ and Zn2+ in MeCN. Orga Biomol Chem 10(44):8753. https://doi.org/10.1039/c2ob26608c

    Article  CAS  Google Scholar 

  47. Zhang YP, Niu WY, Ma CM, Yang YS, Guo HC, Xue JJ (2021) Fluorogenic recognition of Zn2+, Cd2+ by a new pyrazoline-based Multi-analyte Chemosensor and its application in live cell imaging. Inorg Chem Commun 130:108735. https://doi.org/10.1016/j.inoche.2021.108735

    Article  CAS  Google Scholar 

  48. Gong ZL, Ge F, Zhao BX (2011) Novel pyrazoline-based selective fluorescent sensor for Zn2+ in aqueous media, Sens. Actuators B Chem 159(1):148–153. https://doi.org/10.1016/j.snb.2011.06.064

    Article  CAS  Google Scholar 

  49. Yang YS, Ma CM, Zhang YP, Xue QH, Ru JX, Liu XY, Guo HC (2018) A highly selective turn-on fluorescent sensor for zinc ion based on a cinnamyl pyrazoline derivative and its imaging in live cells. Anal Methods 10(16):1833–1841

    Article  CAS  Google Scholar 

  50. Zhang Z, Wang FW, Wang SQ, Ge F, Zhao BX, Miao JY (2012) A highly sensitive fluorescent probe based on simple pyrazoline for Zn2+ in living neuron cells. Org Biomol Chem 10(43):8640. https://doi.org/10.1039/c2ob26375k

    Article  CAS  PubMed  Google Scholar 

  51. Gong ZL, Zhao BX, Liu WY, Lv HS (2011) A new highly selective turn on fluorescent sensor for zinc ion based on a pyrazoline derivative. J Photochem Photobiol A 218:6–10. https://doi.org/10.1016/j.jphotochem.2010.11.014

    Article  CAS  Google Scholar 

  52. Zhang TT, Chen XP, Liu JT, Zhang LZ, Chu JM, Su L (2014) Zhao. A high sensitive fluorescence turn-on probe for imaging Zn2 + in aqueous solution and living cells. RSC Adv 4(33):16973. https://doi.org/10.1039/c4ra00584h

    Article  ADS  CAS  Google Scholar 

  53. Wang P, Komatsuzaki NO, Himeda Y, Sugihara H, Arakawa H, Kasuga K. 3-(2-Pyridyl)-2-pyrazoline derivatives: novel fluorescent probes for Zn2+ ion. Tetrahedron Lett 42:9199–9201

  54. Zhang YP, Xue QH, Yang YS, Liu XY, Ma CM, Ru JX, Guo HC (2018) A chromene pyrazoline derivatives fluorescent probe for Zn2+ detection in aqueous solution and living cells. Inorganica Chim Acta 479:128–134. https://doi.org/10.1016/j.ica.2018.04.020

    Article  CAS  Google Scholar 

  55. Kumar CK, Trivedi R, Kumar KR, Giribabu L, Sridhar B (2013) 1-(2-Pyridyl)-3-ferrocenylpyrazoline-based Multichannel Signaling receptors for Co2+, Cu2+, and Zn2+ ions. Eur J Inorg Chem I30944:1–10. https://doi.org/10.1002/ejic.201300944

  56. Li MM, Wang FW, Wang XY, Zhang TT, Xu Y, Xiao Y, Miao JY, Zhao BX (2014) A new turn-on fluorescence probe for Zn2+ in aqueous solution and imaging application in living cells. Anal Chem Acta 826:77–83. https://doi.org/10.1016/j.aca.2014.04.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors, thanks to Department of Chemistry, School of Sciences, Maulana Azad National Urdu University for Providing Research facility and financial support for the Research Scholars.

Funding

No any fund for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this Review manuscript, study conception and design. The first draft of the manuscript was written by Md. Zafer Alam under the guidance of Salman A. Khan and all authors commented on previous versions of the manuscript. Alimuddin: Review & editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Salman A. Khan.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors have no conflict of interest in this research.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.Z., Ahmad, S., Alimuddin et al. Synthesis of Fluorescent Pyrazoline Sensors as Versatile Tool for Zinc ion Detection: A Mini-Review. J Fluoresc (2024). https://doi.org/10.1007/s10895-023-03571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03571-y

Keywords

Navigation