Skip to main content
Log in

Rhodamine-based Fluorescent Probe With Quick Response and High Selectivity for Imaging Labile Ferrous Iron in Living Cells and Zebrafish

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The transition between its various oxidation states of Iron plays a crucial part in various chemical transformation of cells. Misregulation of iron can give rise to the iron-catalyzed reactive oxygen species disorder which have been linked to a variety of diseases, so it is crucial to monitor the labile iron pool in vivo for clinical diagnosis. According to iron autoxidation and hydrogen abstraction reaction, we reported a novel “off-on” fluorescent probe to response to ferrous (Fe2+) both in solutions and biological systems. The probe responds to Fe2+ with good selectivity toward competing metal ions. What’s more, the probe presents significant fluorescent enhancement to Fe2+ in less than 1 min, making real-time sensing in biological system possible. The applications of the probe in bioimaging revealed the changes in labile iron pool by iron autoxidation or diverse stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available in the supplementary material.

References

  1. Nan XJ, Huyan YC, Li HJ, Sun SG, Xu YQ (2021) Reaction-based fluorescent probes for Hg2+, Cu2+and Fe3+/Fe2+. Coordin Chem Rev 426:213580

    Article  CAS  Google Scholar 

  2. Kouser R, Zehra S, AhmadKhan R, Alsalme A, Arjmand F, Tabassum S (2021) Turn-on benzophenone based fluorescence and colorimetric sensor for the selective detection of Fe2+ in aqueous media: validation of sensing mechanism by spectroscopic and computational studies. Spectrochim Acta A 247:119156

    Article  CAS  Google Scholar 

  3. Feng SM, Zheng JR, Zhang JZ, Gui ZS, Feng GQ (2022) Fe2+ imaging in ferroptosis and drug-induced liver injury with a ratiometric near-infrared fluorescent probe. Sens Actuat B 371:132512

    Article  CAS  Google Scholar 

  4. Zhang XY, Ma QQ, Liu XF, Niu HW, Luo L, Li RF, Feng X (2022) A turn-off Eu-MOF@Fe2+ sensor for the selective and sensitive fluorescence detection of bromate in wheat flour. Food Chem 382:132379

    Article  PubMed  CAS  Google Scholar 

  5. Hou XH, Song YF, Lv YP, Wang PY, Chen K, Li GY, Guo L (2023) Preparation of temperature-responsive nanomicelles with AIE property as fluorescence probe for detection of Fe3+and Fe2+. Spectrochim Acta A 290:122254

    Article  CAS  Google Scholar 

  6. Ganz T (2013) Systemic iron homeostasis. Physiol Rev 93:1721–1741

    Article  PubMed  CAS  Google Scholar 

  7. Parsaei-Khomami A, Badiei A, Ghavami ZS, Ghasemi JB (2022) A new fluorescence probe for simultaneous determination of Fe2+ and Fe3+ by orthogonal signal correction-principal component regression. J Mol Struct 1252:131978

    Article  CAS  Google Scholar 

  8. Wang Y, Ding Y, Tan YY, Fu LX, Qing WX (2023) Preparation of transition metal ions (Fe2+, Co2+ and Ni2+) doped carbon nanoparticles from biowaste for cystine and cr(VI) detection and fluorescence ink. Inorg Chem Commun 147:110220

    Article  CAS  Google Scholar 

  9. Prajapati S, Sinha P, Hindore S, Jana S (2023) Selective turn-on fluorescence sensing of Fe2+in real water samples by chalcones. Spectrochim Acta A 287:122107

    Article  CAS  Google Scholar 

  10. Torti SV, Torti FM (2013) Iron and cancer: more ore to be mined. Nat Rev Cancer 13:342–355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Fan KQ, Wang XB, Yu SY, Han GL, Xu D, Zhou LM, Song J (2019) A chitosan-based fluorescent hydrogel for selective detection of Fe2+ions in gel-to-sol mode and turn-off fluorescence mode. Polym Chem 10:5037–5043

    Article  CAS  Google Scholar 

  12. Li K, Reichmann H (2016) Role of iron in neurodegenerative Diseases. J Neural Trans (Venna) 123:389–399

    Article  CAS  Google Scholar 

  13. Zheng JR, Feng SM, Gong SY, Xia QF, Feng GQ (2020) In vivo imaging of Fe2+using an easily obtained probe with a large Stokes shift and bright strong lipid droplet-targetable near-infrared fluorescence. Sens Actuat B 309:127796

    Article  CAS  Google Scholar 

  14. Xu YY, Zhang ZZ, Lv PY, Duan YH, Li GP, Ye BX (2019) Ratiometric fluorescence sensing of Fe2+/3+ by carbon dots doped lanthanide coordination polymers. J Lumin 205:519–524

    Article  CAS  Google Scholar 

  15. Enami S, Sakamoto Y, Colussi AJ (2014) Fenton chemistry at aqueous interfaces. Proc Natl Acad Sci USA 111:623–628

    Article  PubMed  CAS  Google Scholar 

  16. Salahudeen AA, Bruick RK (2009) Maintaining mammalian iron and oxygen homeostasis: sensors, regulation, and cross-talk. Ann NY Acad Sci 1177:30–38

    Article  PubMed  CAS  Google Scholar 

  17. Crichton RR, Wilmet S, Legssyer R, Ward RJ (2002) Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem 91:9–18

    Article  PubMed  CAS  Google Scholar 

  18. Philpott CC (2012) Coming into View: Eukaryotic Iron chaperones and Intracellular Iron Delivery: Fig. 1. J Biol Chem 287:13518–13523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wan CF, Chang YJ, Chien CY, Sie YW, Hu CH, Wu AT (2016) A new multifunctional Schiff base as a fluorescence sensor for Fe2+and Fions, and a colorimetric sensor for Fe3+. J Lumin 178:115–120

    Article  CAS  Google Scholar 

  20. Murale DP, Singh AP, Lavoie J, Liew H, Lee JCH, Suh YH, Churchill DG (2013) Novel molecular tools to discriminate Fe3+and Fe2+by fluorescence via turn-on responses within neuronal cells. Sens Actuat B 185:755–761

    Article  CAS  Google Scholar 

  21. Zeng XD, Chen J, Yu SH, Liu ZG, Ma MS (2022) Highly selective and sensitive turn-on fluorescent probe for Fe2+and its applications. J Lumin 250:119069

    Article  CAS  Google Scholar 

  22. Lama AD, Sestelo JP, Valencia L, Esteban-Gómez D, Sarandeses LA, Martínez MM (2022) Synthesis and structural analysis of push-pull imidazole-triazole based fluorescent bifunctional chemosensor for Cu2+ and Fe2+detection. Dyes Pigm 205:110539

    Article  Google Scholar 

  23. Sahoo SK, Sharma D, Bera R, Crisponi G, Callan J (2012) ChemInform Abstract: Iron(III) selective molecular and supramolecular fluorescent probes. Chem Soc Rev 41:7195–7227

    Article  PubMed  CAS  Google Scholar 

  24. Hirayama T, Tsuboi H, Niwa M, Miki A, Kadota S, Ikeshita Y, Okuda K, Nagasawa H (2017) A universal fluorogenic switch for Fe(II) ion based on N-oxide chemistry permits the visualization of intracellular redox equilibrium shift towards labile iron in hypoxic Tumor cells. Chem Sci 8:4858–4866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hirayama T, Niwa M, Hirosawa S, Nagasawa H (2020) High-throughput screening for the discovery of iron homeostasis modulators using an extremely sensitive fluorescent probe. ACS Sens 5:2950–2958

    Article  PubMed  CAS  Google Scholar 

  26. Guan JP, Tu Q, Chen L, Yuan MS, Wang JY (2019) A benzothiazole-rhodol based Luminophor: ESIPT-induced AIE and an application for detecting Fe2+ion. Pectrochim Acta A 220:117114

    Article  CAS  Google Scholar 

  27. Adachi T, Nonomura S, Horiba M, Hirayama T, Kamiya T, Nagasawa H, Hara H (2016) Iron stimulates plasma-activated medium-induced A549 cell injury. Sci Rep 6:20928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Takenaka M, Suzuki N, Mori M, Hirayama T, Nagasawa H, Morishige KI (2017) Iron regulatory protein 2 in ovarian endometrial cysts. Biochem Biophys Res Commun 487:789–794

    Article  PubMed  CAS  Google Scholar 

  29. Itoa F, Nishiyamaa T, Shia L, Moria M, Hirayamad T, Nagasawad H, Yasuie H, Toyokuni S (2016) Contrasting intra- and extracellular distribution of catalytic ferrous iron in ovalbumin-induced Peritonitis. Biochem Biophys Res Commun 476:600–606

    Article  Google Scholar 

  30. Wang Y, Okazaki Y, Shi L, Kohda H, Tanaka M, Taki K, Nishioka T, Hirayama T, Nagasawa H, Yamashita Y, Toyokuni S (2016) Role of hemoglobin and transferrin in multi-wall carbon nanotube-induced mesothelial injury and carcinogenesis. Cancer Sci 107:250–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mori M, Ito F, Shi L, Wang Y, Ishida C, Hattori Y, Niwa M, Hirayama T, Nagasawa H, Iwase A, Kikkawa F, Toyokuni S (2015) Ovarian endometriosis-associated stromal cells reveal persistently high affinity for iron. Redox Biol 6:578–586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Shi L, Ito F, Wang, Okazaki Y, Tanaka H, Mizuno M, Horic M, Hirayamad T, Nagasawad H, Richardsone Des R, Toyokunia S (2017) Nonthermal plasma induces a stress response in Mesothelioma cells resulting in increased endocytosis, lysosome biogenesis and autophagy. Free Radic Biol Med 10:904–917

    Article  Google Scholar 

  33. Ikeda Y, Horinouchi Y, Hamano H, Hirayama T, Kishi S, Izawa-Ishizawa Y, Lmanishi M, Zamami Y, Takechi K, Miyamoto L, Lshizawa K, Aihara K, Nagasawa H, Tsuchiya K, Tamaki T (2017) Dietary iron restriction alleviates renal tubulointerstitial injury induced by protein overload in mice. Sci Rep 7:10621

    Article  PubMed  PubMed Central  Google Scholar 

  34. Au-Yeung HY, Chan J, Chantarojsiri T, Chang CJ (2013) Molecular imaging of labile iron(II) pools in living cells with a turn-on fluorescent probe. J Am Chem Soc 135:15165–15173

    Article  PubMed  CAS  Google Scholar 

  35. Aron AT, Loehr MO, Bogena J, Chang CJ (2016) An endoperoxide reactivity-based FRET probe for ratiometric fluorescence imaging of labile iron pools in living cells. J Am Chem Soc 138:14338–14346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Spangler B, Morgan CW, Fontaine SD, Vander Wal MN, Chang CJ, Wells A, Renslo AR (2016) A reactivity-based probe of the intracellular labile ferrous iron pool. Nat Chem Biol 12:680–685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Maiti S, Aydin Z, Zhang Y, Guo M (2015) Reaction-based turn-on fluorescent probes with magnetic responses for Fe2+ detection in live cells. Dalton Tran 44:8942–8949

    Article  CAS  Google Scholar 

  38. Xuan WM, Pan R, Wei YY, Cao YT, Li HQ, Liang FS, Liu KJ, Wang W (2016) Reaction-based Off-On fluorescent probe enabling detection of endogenous labile Fe2+ and imaging of Zn2+-induced Fe2+ flux in living cells and elevated Fe2+ in ischemic Stroke. Bioconjug Chem 27:302–308

    Article  PubMed  CAS  Google Scholar 

  39. Huang X, Dai JS, Fournier J, Ali AM, Zhang Q, Frenkel (2002) Ferrous, ion autoxidation and its chelation in iron-loaded human liver HepG2 cells. Free Radical Biol Me 32:84–92

    Article  CAS  Google Scholar 

  40. Burkitt MJ, Gilbert BC (1991) Model studies of the Iron-Catalysed Haber-Weiss cycle and the Ascorbate-Driven Fenton Reaction. Free Radic Res Commun 14:107–123

    Article  PubMed  CAS  Google Scholar 

  41. Qian SY, Buettner GR (1999) Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: an electron paramagnetic resonance spin trapping study. Free Radic Biol Med 26:1447–1456

    Article  PubMed  CAS  Google Scholar 

  42. Park JS, Wood PM, Davies MJ, Gilbert BC, Whitwood AC (1997) A kinetic and ESR investigation of iron(II) oxalate oxidation by hydrogen peroxide and dioxygen as a source of hydroxyl radicals. Free Radic Res 27:447–458

    Article  PubMed  CAS  Google Scholar 

  43. Biaglow JE, Kachur AV (1997) The Generation of Hydroxyl radicals in the reaction of Molecular Oxygen with Polyphosphate Complexes of Ferrous Ion. Radiat Re 148:181–187

    Article  CAS  Google Scholar 

  44. Kim M, Ko SK, Kim H, Shin I, Tae J (2013) Rhodamine cyclic hydrazide as a fluorescent probe for the detection of hydroxyl radicals. Chem Commun 49:7959–7961

    Article  CAS  Google Scholar 

  45. Liu CY, Zhang X, Li ZL, Chen YN, Zhuang Z, Jia P, Zhu H, Yu M, Zhu BC, Sheng WL (2019) Novel dimethyl-hydrazine-derived spirolactam fluorescent chemodosimeter for tracing basal peroxynitrite in live cells and zebrafish. J Agr Food Chem 67:6407–6413

    Article  CAS  Google Scholar 

Download references

Funding

The financial support provided by Jilin Provincial of Science Technology Department (20220203020SF), the National Natural Science Foundation of China (22106051).

Author information

Authors and Affiliations

Authors

Contributions

XDZ and JF participated in the study design, the results discussion and revised the manuscript. SSW and XC participated in the study design, the results discussion, manuscript preparation, and revision. SHY conducted the practical work, participated in the results discussion, preparation and writing of the manuscript first draft. ZGL participated in the study design, the results discussion, manuscript preparation, revision and submission.

Corresponding authors

Correspondence to Jing Fu or Xiaodan Zeng.

Ethics declarations

Ethics Approval and Consent to Participate

Not required.

Consent for Publication

Not Applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Chen, X., Liu, Z. et al. Rhodamine-based Fluorescent Probe With Quick Response and High Selectivity for Imaging Labile Ferrous Iron in Living Cells and Zebrafish. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03551-2

Keywords

Navigation