Skip to main content
Log in

A Reaction-Based ESIPT Fluorescent Probe for the Detection of Hg2+ with Large Stokes Shift

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel reaction-based fluorescent probe 1 for Hg2+ was designed and synthesized. 1 was almost nonfluoresent due to inhibition of the ESIPT process between hydroxy group and imid carbonyl oxygen by diphenylphosphinothioate group. After reacting with Hg2+, the fluorescence intensity of 1 exhibited significant enhancement owing to recovery of the ESIPT process via Hg2+-promoted desulfurization-hydrolysis of the diphenylphosphinothioate moiety and cleavage of the P-O bond. 1 not only showed rapid response, high sensitivity, excellent selectivity for Hg2+ over other metal ions, but also could detect Hg2+ with large Stokes shift (165 nm), which was attributed to the ESIPT process. Moreover, the reaction mechanism was fully validated by absorption spectra, fluorescence spectra, fluorescence color as well as ESI–MS analysis.

Graphical Abstract

1 is the reaction-based ESIPT fluorescent probe for the detection of Hg2+ with large Stokes shift, rapid response, high sensitivity and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

The data generated and analyzed will be made available upon reasonable request from the corresponding author.

References

  1. Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U (2020) Toxicity of mercury: Molecular evidence. Chemosphere 245:125586

    Article  CAS  PubMed  Google Scholar 

  2. Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47:74–83

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bjørklund G, Dadar M, Mutter J, Aaseth J (2017) The toxicology of mercury: Current research and emerging trends. Environ Res 159:545–554

    Article  PubMed  Google Scholar 

  4. Clifton JC II (2007) Mercury exposure and public health. Pediatr Clin North Am 54(237):e1-237.e45

    Google Scholar 

  5. Bernhoft RA (2012) Mercury toxicity and treatment: A review of the literature. J Environ Public Health 2012:460508

    Article  PubMed  Google Scholar 

  6. Raj D, Maiti SK (2019) Sources, toxicity, and remediation of mercury: An essence review. Environ Monit Assess 191:566–588

    Article  CAS  PubMed  Google Scholar 

  7. Gibb H, O’Leary KG (2014) Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: A comprehensive review. Environ Health Perspect 122:667–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: Sources, pathways, and effects. Environ Sci Technol 47:4967–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301:1203

    Article  CAS  PubMed  Google Scholar 

  10. Erdemir E, Suna G, Gunduz S, Şahin M, Eğlence-Bakır S, Karakuş E (2022) Rapid, ultrasensitive, highly selective detection of toxic Hg(II) ions in seabass, swordfish and water samples. Food Chem 371:131309

    Article  CAS  PubMed  Google Scholar 

  11. Ding C, Chen J, Zhu F, Chai L, Lin Z, Zhang K, Shi Y (2022) Biological toxicity of heavy metal(loid)s in natural environments: From microbes to humans. Front Environ Sci 10:920957

    Article  Google Scholar 

  12. Li WC, Tse HF (2015) Health risk and significance of mercury in the environment. Environ Sci Pollut Res 22:192–201

    Article  CAS  Google Scholar 

  13. Bhan A, Sarkar NN (2005) Mercury in the environment: Effect on health and reproduction. Rev Environ Health 20:39–56

    Article  CAS  PubMed  Google Scholar 

  14. Peng S, Hajela RK, Atchison WD (2002) Effects of methylmercury on human neuronal L-type calcium channels transiently expressed in human embryonic kidney cells (HEK-293). J Pharmacol Exp Ther 302:424–432

    Article  CAS  PubMed  Google Scholar 

  15. Azevedo BF, Furieri LB, Peçanha FM, Wiggers GA, Vassallo PF, Simões MR, Fiorim J, de Batista PR, Fioresi M, Rossoni L, Stefanon I, Alonso MJ, Salaices M, Vassallo DV (2012) Toxic effects of mercury on the cardiovascular and central nervous systems. J Biomed Biotechnol 2012:949048

    Google Scholar 

  16. D’Itri FM (1991) Mercury contamination-what we have learned since Minamata. Environ Monit Assess 19:165–182

    Article  CAS  PubMed  Google Scholar 

  17. Fujimura M, Usuki F (2022) Cellular conditions responsible for methylmercury-mediated neurotoxicity. Int J Mol Sci 23:7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Souza JP, Cerveira C, Miceli TM, Moraes DP, Mesko MF, Pereira JSF (2020) Evaluation of sample preparation methods for cereal digestion for subsequent As, Cd, Hg and Pb determination by AAS-based techniques. Food Chem 321:126715

    Article  CAS  PubMed  Google Scholar 

  19. Liu J-L, Han Q, Hu E-Y, Yang C, Yin M-M (2023) Determination of trace mercury in water samples by cloud point extraction coupled with atomic fluorescence spectrometry. J Anal Chem 78:303–309

    Article  CAS  Google Scholar 

  20. Shih TT, Chen JY, Luo YT, Lin CH, Liu YH, Su YA, Chao PC, Sun YC (2019) Development of a titanium dioxide-assisted preconcentration/on-site vapor-generation chip hyphenated with inductively coupled plasma-mass spectrometry for online determination of mercuric ions in urine samples. Anal Chim Acta 1063:82–90

    Article  CAS  PubMed  Google Scholar 

  21. Shoaee H, Roshdi M, Khanlarzadeh N, Beiraghi A (2012) Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry. Spectrochim Acta A Mol Biomol Spectrosc 98:70–75

    Article  CAS  PubMed  Google Scholar 

  22. Hellings J, Adeloju SB, Verheyen TV (2013) Rapid determination of ultra-trace concentrations of mercury in plants and soils by cold vapour inductively coupled plasma-optical emission spectrometry. Microchem J 111:62–66

    Article  CAS  Google Scholar 

  23. Liu KX, Pan MF, Zhang ZW, Hong LP, Xie XQ, Yang JY, Wang S, Wang ZJ, Song Y, Wang S (2022) Electrochemical sensor applying ZrO2/nitrogen-doped three-dimensional porous carbon nanocomposite for efficient detection of ultra-trace Hg2+ ions. Anal Chim Acta 1231:340392

    Article  CAS  PubMed  Google Scholar 

  24. Hassan MM, Ahmad W, Zareef M, Rong Y, Xu Y, Jiao T, He P, Li H, Chen Q (2021) Rapid detection of mercury in food via rhodamine 6G signal using surface-enhanced Raman scattering coupled multivariate calibration. Food Chem 358:129844

    Article  CAS  PubMed  Google Scholar 

  25. George GN, Singh SP, Myers GJ, Watson GE, Pickering IJ (2010) The chemical forms of mercury in human hair: A study using X-ray absorption spectroscopy. J Biol Inorg Chem 15:709–715

    Article  CAS  PubMed  Google Scholar 

  26. Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41:3210–3244

    Article  CAS  PubMed  Google Scholar 

  27. Yuan X, Leng T-H, Guo Z-Q, Wang C-Y, Li J-Z, Yang W-W, Zhu W-H (2019) A FRET-based dual-channel turn-on fluorescence probe for the detection of Hg2+ in living cells. Dyes Pigments 161:403–410

    Article  CAS  Google Scholar 

  28. Sada PK, Bar A, Jassal AK, Singh AK, Singh L, Rai A (2023) A dual channel rhodamine appended smart probe for selective recognition of Cu2+ and Hg2+ via “turn on” optical readout. Anal Chim Acta 1263:341299

    Article  CAS  PubMed  Google Scholar 

  29. Duarte F, Dobrikov G, Kurutos A, Santos HM, Fernández-Lodeiro J, Capelo-Martinez JL, Oliveira E, Lodeiro C (2023) Enhancing water sensing via aggregation-induced emission (AIE) and solvatofluorochromic studies using two new dansyl derivatives containing a disulfide bound: Pollutant metal ions detection and preparation of water-soluble fluorescent polymeric particles. Dyes Pigments 218:111428

    Article  CAS  Google Scholar 

  30. Loredo A, Wang L, Wang S, Xiao H (2021) Single-atom switching as a general approach to designing colorimetric and fluorogenic probes for mercury ions. Dyes Pigments 186:109014

    Article  CAS  PubMed  Google Scholar 

  31. Li M, Li R, Chen X, Liu J, Shao Y, Xu Z, Zhang W (2022) An activatable near-infrared hemicyanine-based probe for selective detection and imaging of Hg2+ in living cells and animals. Analyst 147:3065–3071

    Article  CAS  PubMed  Google Scholar 

  32. Gu J, Zhang F, Zheng Z, Li X, Deng R, Zhou Z, Ma L, Liu W, Wang Q (2021) Establishment of a new molecular model for mercury determination verified by single crystal X-ray diffraction, spectroscopic analysis and biological potentials. Chinese Chem Lett 32:87–91

    Article  CAS  Google Scholar 

  33. Chen L, Park SJ, Wu D, Kim HM, Yoon J (2019) A two-photon fluorescent probe for colorimetric and ratiometric monitoring of mercury in live cells and tissues. Chem Commun 55:1766–1769

    Article  CAS  Google Scholar 

  34. Gong J, Liu C, Jiao X, He S, Zhao L, Zeng X (2020) A novel near-infrared fluorescent probe with an improved Stokes shift for specific detection of Hg2+ in mitochondria. Org Biomol Chem 18:5238–5244

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y, Zhang W, Cai Y, Kwok RTK, Hu Y, Lam JWY, Gu X, He Z, Zhao Z, Zheng X, Chen B, Gui C, Tang BZ (2017) AIEgens for dark through-bond energy transfer: Design, synthesis, theoretical study and application in ratiometric Hg2+ sensing. Chem Sci 8:2047–2055

    Article  CAS  PubMed  Google Scholar 

  36. Zhao J, Zhang J, Hu B, Gao C, Li Z, Sun Z, You J (2023) A FRET-based ratiometric fluorescent probe for Hg2+ detection in aqueous solution and bioimaging in multiple samples. Spectrochim Acta A Mol Biomol Spectrosc 286:121965

    Article  CAS  PubMed  Google Scholar 

  37. Liu L, Ma J, Pan J, Li D, Wang H, Yang H (2021) The preparation of novel triphenylamine-based AIE-effect fluorescent probe for selectively detecting mercury(II) ion in aqueous solution. New J Chem 45:5049–5059

    Article  CAS  Google Scholar 

  38. Santra M, Roy B, Ahn KH (2011) A “reactive” ratiometric fluorescent probe for mercury species. Org Lett 13:3422–3425

    Article  CAS  PubMed  Google Scholar 

  39. Li L, Ouyang H, Long Z, Zhang Q, Jiang Y, Cai M, Xiong S, Peng S, Xu G, He Q (2023) A triphenylamine-based fluorescent probe with phenylboronic acid for highly selective detection of Hg2+ and CH3Hg+ in groundwater. Org Biomol Chem 21:5560–5566

    Article  CAS  PubMed  Google Scholar 

  40. Subedi S, Neupane LN, Mehta PK, Lee K-H (2021) Ratiometric fluorescent detection of Hg(II) by amino-acid based fluorescent chemodosimeter using irreversible reaction of phenylboronic acid with mercury species. Dyes Pigments 191:109374

    Article  CAS  Google Scholar 

  41. Choudhary NK, Mittapelli LL, Roy PK, Das G, Mandal M, Gore KR (2023) Vinyl substituted triphenylamine based turn-off fluorescent probe for selective and sensitive detection of mercury (II) in water and live cells. Spectrochim Acta A Mol Biomol Spectrosc 285:121887

    Article  CAS  PubMed  Google Scholar 

  42. Chen J, Tao J, Yu H-F, Ma C-P, Tan F, Wang X-C (2023) Highly selective chemosensor for the sensitive detection of Hg2+ in aqueous media and its cell imaging application. Spectrochim Acta A Mol Biomol Spectrosc 296:122648

    Article  CAS  PubMed  Google Scholar 

  43. He L, Li Q, Zhang Y, Huang K, Du B, Liang L (2023) A naphthalimide functionalized fluoran with AIE effect for ratiometric sensing Hg2+ and cell imaging application. Spectrochim Acta A Mol Biomol Spectrosc 296:122672

    Article  CAS  PubMed  Google Scholar 

  44. Tang B, Ding B, Xu K, Tong L (2009) Use of selenium to detect mercury in water and cells: An enhancement of the sensitivity and specificity of a seleno fluorescent probe. Chem Eur J 15:3147–3151

    Article  CAS  PubMed  Google Scholar 

  45. Nan X, Huyan Y, Li H, Sun S, Xu Y (2021) Reaction-based fluorescent probes for Hg2+, Cu2+ and Fe3+/Fe2+. Coord Chem Rev 426:213580

    Article  CAS  Google Scholar 

  46. Yang X, Yuan Z, Lu W, Yang C, Wang M, Tripathi R, Fultz Z, Tan C, Wang B (2023) De novo construction of fluorophores via CO insertion-initiated lactamization: A chemical strategy toward highly sensitive and highly selective turn-on fluorescent probes for carbon monoxide. J Am Chem Soc 145:78–88

    Article  CAS  PubMed  Google Scholar 

  47. Li Z, Jia X, Zhang P, Guo Z, Zhao H, Li X, Wei C (2021) A hepatocyte-specific fluorescent probe for imaging endogenous carbon monoxide release in vitro and in vivo. Sens Actuators B Chem 344:130177

    Article  CAS  Google Scholar 

  48. Shao S, Chen B, Cheng J, Wang C, Zhang Y, Shao L, Hu Y, Han Y, Han F, Li X (2017) A fluorogenic probe for imaging protein S-nitrosylation in live cells. Biosens Bioelectron 94:162–168

    Article  CAS  PubMed  Google Scholar 

  49. Shen Y, Zhang X, Wu Y, Zhang Y, Liu X, Chen Y, Li H, Zhong Y (2018) A lysosome targetable fluorescent probe for palladium species detection base on an ESIPT phthalimide derivative. Spectrochim Acta A Mol Biomol Spectrosc 205:66–71

    Article  CAS  PubMed  Google Scholar 

  50. Liu X, Liu X, Shen Y, Gu B (2020) A simple water-soluble ESIPT fluorescent probe for fluoride ion with large stokes shift in living cells. ACS Omega 5:21684–21688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jain N, Sonawane PM, Liu H, Roychaudhury A, Lee Y, An J, Kim D, Kim D, Kim Y, Kim Y-C, Cho K-B, Park H-S, Kim C-H, Churchill DG (2023) “Lighting up” fluoride: Cellular imaging and zebrafish model interrogations using a simple ESIPT-based mycophenolic acid precursor-based probe. Analyst 148:2609–2615

    Article  CAS  PubMed  Google Scholar 

  52. Wu Y, Li Z, Shen Y (2019) A novel ESIPT phthalimide-based fluorescent probe for quantitative detection of H2O2. ACS Omega 4:16242–16246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu L, Tian X, Lee DJ, Yoon J, Lim CS, Kim HM, James TD (2021) Two-photon ESIPT-based fluorescent probe using 4-hydroxyisoindoline-1,3-dione for the detection of peroxynitrite. Chem Commun 57:11084–11087

    Article  CAS  Google Scholar 

  54. Xia X, Liu S, Liu W, Xu Q, Xu X, Liu F, Deng T (2022) Probe and dye design through copper-mediated reactions of N-arylhydroxylamines. Org Biomol Chem 20:9234–9240

    Article  CAS  PubMed  Google Scholar 

  55. Wang T, Douglass EF Jr, Fitzgerald KJ, Spiegel DA (2013) A “turn-on” fluorescent sensor for methylglyoxal. J Am Chem Soc 135:12429–12433

    Article  CAS  PubMed  Google Scholar 

  56. Ren A, Zhu D, Luo Y (2020) A novel Boranil-based turn-on fluorescent probe for imaging of biothiols in living cells. J Mol Struct 1209:127914

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi.

Funding

The work was supported by funding from the Natural Science Foundation of Guangxi (2021GXNSFBA220038, 2019GXNSFDA185003).

Author information

Authors and Affiliations

Authors

Contributions

D.Z. designed the experiments and wrote the manuscript. W.Y. synthesized and purified the compounds as well as performed the characterization experiments. A.R. created the figures, carried out the theoretical calculations and characterization experiments.

Corresponding author

Correspondence to Aishan Ren.

Ethics declarations

Ethical Approval

This article does not contain any studies involving human participants conducted by any of the authors.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A reaction-based ESIPT fluorescent probe 1 for Hg2+ was developed.

1 exhibited rapid response, high sensitivity, excellent selectivity.

1 could detect Hg2+ with large Stokes shift.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 696 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Yao, W. & Ren, A. A Reaction-Based ESIPT Fluorescent Probe for the Detection of Hg2+ with Large Stokes Shift. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03508-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03508-5

Keywords

Navigation