Skip to main content
Log in

The Green Synthesis of Carbon Quantum Dots through One-step Hydrothermal Approach by Orange Juice for Rapid, and Accurate Detection of Dopamine

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the current study, the fluorescent Carbon quantum dots (CDs) were synthesized through one-step hydrothermal approach by orange juice without any additional agents. The as-prepared green-CDs (GCDs) were quasi-spherical shape ranged from 2 to 8 nm with an average diameter of 5 nm, and emitted bright blue fluorescent (FL) under ultraviolet light irradiation (Uv). Different detailed analyses proved that the as-prepared GCDs had good morphologies, various functional groups, high water solubility, great optical features, and excellent stability towards diverse environmental conditions. The results indicated that the as-prepared GCDs can detect different concentrations of dopamine from 1 to 100 µM based on the quenching of their native fluorescent. Furthermore, the good linear relationship was obtained for dopamine in the broad range of concentrations from 1 to 100 µM with the limit of detection (LOD) of 0.81 µM. In addition, the as-prepared GCDs can be applied as a fluorescent probe for detection of dopamine in the different real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data related to this publication are made available in the article.

References

  1. Devi P, Saini S, Kim KH (2019) The advanced role of carbon quantum dots in nanomedical applications. Biosens Bioelectron 141:111158. https://doi.org/10.1016/j.bios.2019.02.059

    Article  CAS  PubMed  Google Scholar 

  2. Hu X, Li Y, Xu Y, Gan Z, Zou X, Shi J, Huang X, Li Z, Li Y (2021) Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk. Food Chem 339:127775. https://doi.org/10.1016/j.foodchem.2020.127775

    Article  CAS  PubMed  Google Scholar 

  3. Cheng L, Xiang Q, Liao Y, Zhang H (2018) CdS-based photocatalysts. Energy Environ Sci 11(6):1362–1391. https://doi.org/10.1039/C7EE03640J

    Article  CAS  Google Scholar 

  4. Peng Z, Han X, Li S, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM (2017) Carbon dots: biomacromolecule interaction, bioimaging and nanomedicine. Coord Chem Rev 343:256–277. https://doi.org/10.1016/j.ccr.2017.06.001

    Article  CAS  Google Scholar 

  5. Ansari L, Hallaj S, Hallaj T, Amjadi M (2021) Doped-carbon dots: recent advances in their biosensing, bioimaging and therapy applications. Colloids Surf B 203:111743. https://doi.org/10.1016/j.colsurfb.2021.111743

    Article  CAS  Google Scholar 

  6. Li X, Zhao S, Li B, Yang K, Lan M, Zeng L (2021) Advances and perspectives in carbon dot-based fluorescent probes: mechanism, and application. Coord Chem Rev 431:213686. https://doi.org/10.1016/j.ccr.2020.213686

    Article  CAS  Google Scholar 

  7. Madrakian T, Maleki S, Gilak S, Afkhami A (2017) Turn-off fluorescence of amino-functionalized carbon quantum dots as effective fluorescent probes for determination of isotretinoin. Sens Actuators B 247:428–435. https://doi.org/10.1016/j.snb.2017.03.071

    Article  CAS  Google Scholar 

  8. Wang Q, Huang X, Long Y, Wang X, Zhang H, Zhu R, Liang L, Teng P, Zheng H (2013) Hollow luminescent carbon dots for drug delivery. Carbon 59:192–199. https://doi.org/10.1016/j.carbon.2013.03.009

    Article  CAS  Google Scholar 

  9. Malik R, Lata S, Soni U, Rani P, Malik RS (2020) Carbon quantum dots intercalated in polypyrrole (PPy) thin electrodes for accelerated energy storage. Electrochim Acta 364:137281. https://doi.org/10.1016/j.electacta.2020.137281

    Article  CAS  Google Scholar 

  10. Wang F, Chen P, Feng Y, Xie Z, Liu Y, Su Y, Zhang Q, Wang Y, Yao K, Lv W, Liu G (2017) Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin. Appl Catal B 207:103–113. https://doi.org/10.1016/j.apcatb.2017.02.024

    Article  CAS  Google Scholar 

  11. Lim JY, Mubarak NM, Abdullah EC, Nizamuddin S, Khalid M (2018) Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals—A review. J Ind Eng Chem 66:29–44. https://doi.org/10.1016/j.jiec.2018.05.028

    Article  CAS  Google Scholar 

  12. Leonel AG, Mansur AA, Mansur HS (2021) Advanced functional nanostructures based on magnetic iron oxide nanomaterials for water remediation: a review. Water Res 190:116693. https://doi.org/10.1016/j.watres.2020.116693

    Article  CAS  PubMed  Google Scholar 

  13. Zhang B, Liu CY, Liu Y A novel one-step approach to synthesize fluorescent carbon nanoparticles. https://doi.org/10.1002/ejic.201000622

  14. Yang Y, Cui J, Zheng M, Hu C, Tan S, Xiao Y, Yang Q, Liu Y (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of Chitosan. Chem Commun 48(3):380–382. https://doi.org/10.1039/C1CC15678K

    Article  CAS  Google Scholar 

  15. Pan D, Zhang J, Li Z, Wu C, Yan X, Wu M (2010) Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem Commun 46(21):3681–3683. https://doi.org/10.1039/C000114G

    Article  CAS  Google Scholar 

  16. Lai CW, Hsiao YH, Peng YK, Chou PT (2012) Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO 2 for cell imaging and drug release. J Mater Chem 22(29):14403–14409. https://doi.org/10.1039/C2JM32206D

    Article  CAS  Google Scholar 

  17. Wu X, Tian F, Wang W, Chen J, Wu M, Zhao JX (2013) Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing. J Mater Chem C 1(31):4676–4684. https://doi.org/10.1039/C3TC30820K

    Article  CAS  Google Scholar 

  18. Wu ZL, Liu ZX, Yuan YH (2017) Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. J Mater Chem B 5(21):3794–3809. https://doi.org/10.1039/C7TB00363C

    Article  CAS  PubMed  Google Scholar 

  19. Guo Y, Wang Z, Shao H, Jiang X (2013) Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon 52:583–589. https://doi.org/10.1016/j.carbon.2012.10.028

    Article  CAS  Google Scholar 

  20. Gudimella KK, Appidi T, Wu HF, Battula V, Jogdand A, Rengan AK, Gedda G (2021) Sand bath assisted green synthesis of carbon dots from citrus fruit peels for free radical scavenging and cell imaging. Colloids Surf B 197:111362. https://doi.org/10.1016/j.colsurfb.2020.111362

    Article  CAS  Google Scholar 

  21. Atchudan R, Edison TN, Shanmugam M, Perumal S, Somanathan T, Lee YR (2021) Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging. Physica E 126:114417. https://doi.org/10.1016/j.physe.2020.114417

    Article  CAS  Google Scholar 

  22. Mehta VN, Jha S, Basu H, Singhal RK, Kailasa SK (2015) One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sens Actuators B 213:434–443. https://doi.org/10.1016/j.snb.2015.02.104

    Article  CAS  Google Scholar 

  23. Hu Z, Jiao XY, Xu L, The N (2020) S co-doped carbon dots with excellent luminescent properties from green tea leaf residue and its sensing of gefitinib. Microchem J 154:104588. https://doi.org/10.1016/j.microc.2019.104588

    Article  CAS  Google Scholar 

  24. Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Dou Y (2014) Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens Bioelectron 60:292–298. https://doi.org/10.1016/j.bios.2014.04.046

    Article  CAS  PubMed  Google Scholar 

  25. Darr JA, Zhang J, Makwana NM, Weng X (2017) Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem Rev 117(17):11125–11238. https://doi.org/10.1021/acs.chemrev.6b00417

    Article  CAS  Google Scholar 

  26. Abid N, Khan AM, Shujait S, Chaudhary K, Ikram M, Imran M, Haider J, Khan M, Khan Q, Maqbool M (2022) Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv Colloid Interface Sci 300:102597. https://doi.org/10.1016/j.cis.2021.102597

    Article  CAS  PubMed  Google Scholar 

  27. Berke JD (2018) What does dopamine mean? Nat Neurosci 21(6):787–793. https://doi.org/10.1038/s41593-018-0152-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Franco R, Reyes-Resina I, Navarro G (2021) Dopamine in health and Disease: much more than a neurotransmitter. Biomedicines 9(2):109. https://doi.org/10.3390/biomedicines9020109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG (2019) Dopamine: functions, signaling, and association with neurological Diseases. Cell Mol Neurobiol 39(1):31–59. https://doi.org/10.1007/s10571-018-0632-3

    Article  Google Scholar 

  30. Xia QP, Cheng ZY, He L (2019) The modulatory role of dopamine receptors in brain neuroinflammation. Int Immunopharmacol 76:105908. https://doi.org/10.1016/j.intimp.2019.105908

    Article  CAS  PubMed  Google Scholar 

  31. Juárez Olguín H, Calderón Guzmán D, Hernández García E, Barragán Mejía G (2016) The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxidative medicine and cellular longevity. 2016. https://doi.org/10.1155/2016/9730467

  32. Deng L, Wang X, Kuang Y, Wang C, Luo L, Wang F, Sun X (2015) Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots. Nano Res 8:2810–2821. https://doi.org/10.1007/s12274-015-0786-y

    Article  CAS  Google Scholar 

  33. Jodko-Piórecka K, Sikora B, Kluzek M, Przybylski P, Litwinienko G (2021) Antiradical activity of dopamine, L-DOPA, adrenaline, and noradrenaline in water/methanol and in liposomal systems. J Org Chem 87(3):1791–1804. https://doi.org/10.1021/acs.joc.1c02308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang X, Wang Y, Li M (2014) Selecting water-alcohol mixed solvent for synthesis of polydopamine nano-spheres using solubility parameter. Sci Rep 4(1):6070. https://doi.org/10.1038/srep06070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu TF, Hong JD (2016) Synthesis of water-soluble dopamine–melanin for ultrasensitive and ultrafast humidity sensor. Sens Actuators B 224:178–184. https://doi.org/10.1016/j.snb.2015.10.015

    Article  CAS  Google Scholar 

  36. Gholipour A, Jahanshahi M, Emadi H Synthesis of carbon quantum dots and Fe-doped carbon quantum dots as fluorescent probes via one-step microwave process for rapid and accurate detection of Diclofenac sodium. J Cluster Sci 2023 Jul 25:1–5. https://doi.org/10.1007/s10876-023-02480-1

  37. Talebian N, Amininezhad SM, Doudi M (2013) Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J Photochem Photobiol B 120:66–73. https://doi.org/10.1016/j.jphotobiol.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  38. Sajid M, Płotka-Wasylka J, Nanoparticles (2020) Synthesis, characteristics, and applications in analytical and other sciences. Microchem J 154:104623. https://doi.org/10.1016/j.microc.2020.104623

    Article  CAS  Google Scholar 

  39. Niu WJ, Li Y, Zhu RH, Shan D, Fan YR, Zhang XJ (2015) Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging. Sens Actuators B 218:229–236. https://doi.org/10.1016/j.snb.2015.05.006

    Article  CAS  Google Scholar 

  40. Miao X, Qu D, Yang D, Nie B, Zhao Y, Fan H, Sun Z (2018) Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv Mater 30(1):1704740. https://doi.org/10.1002/adma.201704740

    Article  CAS  Google Scholar 

  41. Yang Y, Liu Z, Chen D, Gu B, Gao B, Wang Z, Guo Q, Wang G (2021) Multifunctional N-doped graphene quantum dots towards tetracycline detection, temperature sensing and high-performance WLEDs. J Photochem Photobiol A 405:112977. https://doi.org/10.1016/j.jphotochem.2020.112977

    Article  CAS  Google Scholar 

  42. Wu JB, Lin ML, Cong X, Liu HN, Tan PH (2018) Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev 47(5):1822–1873. https://doi.org/10.1039/C6CS00915H

    Article  CAS  PubMed  Google Scholar 

  43. Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41. https://doi.org/10.1021/nl071822y

    Article  CAS  PubMed  Google Scholar 

  44. Ayodhya D, Veerabhadram G (2016) Green synthesis, optical, structural, photocatalytic, fluorescence quenching and degradation studies of ZnS nanoparticles. J Fluoresc 26:2165–2175. https://doi.org/10.1007/s10895-016-1912-2

    Article  CAS  PubMed  Google Scholar 

  45. Bajpai SK, D’souza A, Suhail B (2019) Blue light-emitting carbon dots (CDs) from a milk protein and their interaction with Spinacia oleracea leaf cells. Int Nano Lett 9:203–212. https://doi.org/10.1007/s40089-019-0271-9

    Article  CAS  Google Scholar 

  46. Atchudan R, Edison TN, Lee YR (2016) Nitrogen-doped carbon dots originating from unripe peach for fluorescent bioimaging and electrocatalytic oxygen reduction reaction. J Colloid Interface Sci 482:8–18. https://doi.org/10.1016/j.jcis.2016.07.058

    Article  CAS  PubMed  Google Scholar 

  47. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Carbon-based dots co‐doped with nitrogen and sulfur for high quantum yield and excitation‐Independent emission. Angew Chem 125(30):7954–7958. https://doi.org/10.1002/ange.201301114

    Article  Google Scholar 

  48. Arul V, Sethuraman MG (2018) Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications. Opt Mater 78:181–190. https://doi.org/10.1016/j.optmat.2018.02.029

    Article  CAS  Google Scholar 

  49. Zheng Y, Arkin K, Hao J, Zhang S, Guan W, Wang L, Guo Y, Shang Q (2021) Multicolor carbon dots prepared by single-factor control of graphitization and surface oxidation for high‐quality white light‐emitting diodes. Adv Opt Mater 9(19):2100688. https://doi.org/10.1002/adom.202100688

    Article  CAS  Google Scholar 

  50. Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Hydrothermal treatment of grass: a low‐cost, green route to nitrogen‐doped, carbon‐rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label‐free detection of Cu (II) ions. Adv Mater 24(15):2037–2041. https://doi.org/10.1002/adma.201200164

    Article  CAS  PubMed  Google Scholar 

  51. Shi L, Li X, Li Y, Wen X, Li J, Choi MM, Dong C, Shuang S (2015) Naked oats-derived dual-emission carbon nanodots for ratiometric sensing and cellular imaging. Sens Actuators B 210:533–541. https://doi.org/10.1016/j.snb.2014.12.097

    Article  CAS  Google Scholar 

  52. Yue J, Li L, Cao L, Zan M, Yang D, Wang Z, Chang Z, Mei Q, Miao P, Dong WF (2019) Two-step hydrothermal preparation of carbon dots for calcium ion detection. ACS Appl Mater Interfaces 11(47):44566–44572. https://doi.org/10.1021/acsami.9b13737

    Article  CAS  PubMed  Google Scholar 

  53. Huang S, Yang E, Yao J, Liu Y, Xiao Q (2018) Red emission nitrogen, boron, sulfur co-doped carbon dots for on-off-on fluorescent mode detection of ag + ions and L-cysteine in complex biological fluids and living cells. Anal Chim Acta 1035:192–202. https://doi.org/10.1016/j.aca.2018.06.051

    Article  CAS  PubMed  Google Scholar 

  54. Zhao K, Zheng X, Zhang H, Xu M, Wang S, Yang Q, Xiong C (2019) Multi-color fluorescent carbon dots with single wavelength excitation for white light-emitting diodes. J Alloys Compd 793:613–619. https://doi.org/10.1016/j.jallcom.2019.04.146

    Article  CAS  Google Scholar 

  55. Zhou J, Shan X, Ma J, Gu Y, Qian Z, Chen J, Feng H (2014) Facile synthesis of P-doped carbon quantum dots with highly efficient photoluminescence. RSC Adv 4(11):5465–5468. https://doi.org/10.1039/C3RA45294H

    Article  CAS  Google Scholar 

  56. Mintz KJ, Zhou Y, Leblanc RM (2019) Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 11(11):4634–4652. https://doi.org/10.1039/C8NR10059D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Feng Z, Li Z, Zhang X, Xu G, Zhou N (2018) Fluorescent carbon dots with two absorption bands: luminescence mechanism and ion detection. J Mater Sci 53(9):6459–6470. https://doi.org/10.1007/s10853-018-2017-x

    Article  CAS  Google Scholar 

  58. Bu L, Luo T, Peng H, Li L, Long D, Peng J, Huang J (2019) One-step synthesis of N-doped carbon dots, and their applications in curcumin sensing, fluorescent inks, and super-resolution nanoscopy. Microchim Acta 186:1–2. https://doi.org/10.1007/s00604-019-3762-5

    Article  CAS  Google Scholar 

  59. Zhi B, Gallagher MJ, Frank BP, Lyons TY, Qiu TA, Da J, Mensch AC, Hamers RJ, Rosenzweig Z, Fairbrother DH, Haynes CL (2018) Investigation of phosphorous doping effects on polymeric carbon dots: fluorescence, photostability, and environmental impact. Carbon 129:438–449. https://doi.org/10.1016/j.carbon.2017.12.004

    Article  CAS  Google Scholar 

  60. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CH, Yang X, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49(26):4430–4434. https://doi.org/10.1002/anie.200906154

    Article  CAS  Google Scholar 

  61. Li X, Chai C, Zhang Y, Wang Y, Lv J, Bian W, Choi MM (2020) Microwave synthesis of nitrogen and sulfur co-doped carbon dots for the selective detection of Hg2 + and glutathione. Opt Mater 99:109559. https://doi.org/10.1016/j.optmat.2019.109559

    Article  CAS  Google Scholar 

  62. Gholipour A, Rahmani S The synthesis of fluorescent carbon quantum dots for tartrazine detection in food: a novel one-step microwave heating approach. Fullerenes, nanotubes and Carbon Nanostructures. 2023 Apr 24:1–9. https://doi.org/10.1080/1536383X.2023.2206124

  63. Rahmani Z, Ghaemy M (2019) One-step hydrothermal-assisted synthesis of highly fluorescent N-doped carbon dots from gum tragacanth: luminescent stability and sensitive probe for Au3 + ions. Opt Mater 97:109356. https://doi.org/10.1016/j.optmat.2019.109356

    Article  CAS  Google Scholar 

  64. Zhang R, Chen W (2014) Nitrogen-doped carbon quantum dots: facile synthesis and application as a turn-off fluorescent probe for detection of Hg2 + ions. Biosens Bioelectron 55:83–90. https://doi.org/10.1016/j.bios.2013.11.074

    Article  CAS  PubMed  Google Scholar 

  65. Walekar LS, Zheng M, Zheng L, Long M (2019) Selenium and nitrogen co-doped carbon quantum dots as a fluorescent probe for perfluorooctanoic acid. Microchim Acta 186:1–9. https://doi.org/10.1007/s00604-019-3400-2

    Article  CAS  Google Scholar 

  66. Yang S, Sun X, Wang Z, Wang X, Guo G, Pu Q (2018) Anomalous enhancement of fluorescence of carbon dots through lanthanum doping and potential application in intracellular imaging of ferric ion. Nano Res 11:1369–1378. https://doi.org/10.1007/s12274-017-1751-8

    Article  CAS  Google Scholar 

  67. Bourlinos AB, Trivizas G, Karakassides MA, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, Papagiannouli I (2015) Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon 83:173–179. https://doi.org/10.1016/j.carbon.2014.11.032

    Article  CAS  Google Scholar 

  68. Long C, Jiang Z, Shangguan J, Qing T, Zhang P, Feng B (2021) Applications of carbon dots in environmental pollution control: a review. Chem Eng J 406:126848. https://doi.org/10.1016/j.cej.2020.126848

    Article  CAS  Google Scholar 

  69. Xu D, Lin Q, Chang HT (2020) Recent advances and sensing applications of carbon dots. Small Methods 4(4):1900387. https://doi.org/10.1002/smtd.201900387

    Article  CAS  Google Scholar 

  70. Hu G, Ge L, Li Y, Mukhtar M, Shen B, Yang D, Li J (2020) Carbon dots derived from flax straw for highly sensitive and selective detections of cobalt, chromium, and ascorbic acid. J Colloid Interface Sci 579:96–108. https://doi.org/10.1016/j.jcis.2020.06.034

    Article  CAS  PubMed  Google Scholar 

  71. Ghereghlou M, Esmaeili AA, Darroudi M (2021) Green synthesis of fluorescent carbon dots from Elaeagnus angustifolia and its application as tartrazine sensor. J Fluoresc 31:185–193. https://doi.org/10.1007/s10895-020-02645-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Babol Noshirvani University of Technology.

Funding

No funding received for current study.

Author information

Authors and Affiliations

Authors

Contributions

Arsalan Gholipour: investigation, validation, writing of the original draft, analysis. Shahrzad Rahmani: conceptualization, supervision, writing, review and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Shahrzad Rahmani.

Ethics declarations

Ethical Approval

This manuscript does not contain any studies with human and/ or animals performed by any of the authors.

Competing Interests

Authors declare no competing interest exists.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholipour, A., Rahmani, S. The Green Synthesis of Carbon Quantum Dots through One-step Hydrothermal Approach by Orange Juice for Rapid, and Accurate Detection of Dopamine. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03483-x

Keywords

Navigation