Skip to main content
Log in

Coordination of Distal Carboxylate Anion Alters Metal Ion Specific Binding in Imidazo[1,2-a]pyridine Congeners

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Imidazo[1,2-a]pyridine derivatives have excellent potential for chelation with transition metal ions. Two new imidazo[1,2-a]pyridine-8-carboxylates were synthesized and characterized by 1H NMR, 13C NMR, HRMS, and single crystal-XRD techniques. Methyl carboxylate (probe 1) turns on fluorescence upon coordination with Zn2+, while sodium carboxylate (probe 2) turns off its fluorescence upon coordination with Co2+ or Cu2+ ions present in aqueous acetonitrile medium. 13C NMR study revealed that the change in metal ion specific binding was due to the involvement of carboxylate anion in complex formation with Co2+ or Cu2+ ions. The carboxylate anion at 8-position also enhanced the sensitivity of detection of probe 2 by an order of magnitude (detection limits: 3.804 × 10–7 M, probe 1/Zn2+; 0.420 × 10–7 M, probe 2/Co2+ and 0.304 × 10–7 M, probe 2/Cu2+). The detection limits of probes 1 and 2 comply well with the World Health Organization (WHO) and US Environmental Protection Agency (US-EPA) guidelines for detection of heavy metal ions present in drinking water and ground water. Both the probes form a 1:1 complex with Zn2+, Co2+ or Cu2+, and the stoichiometry was verified by Job plot and ESI-mass analysis. The sensing mechanism is explained using 13C NMR experiments, ESI-mass analytical data and theoretical DFT calculations. The suitability of probes 1 and 2 for on-site detection and quantitative determination of Zn2+, Co2+ and Cu2+ ions present in biological, environmental and industrial samples is demonstrated. In addition, both 1 and 2 are used for detection of intracellular contamination of Zn2+, Co2+ or Cu2+ ions in onion epidermal cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Samples of probe molecules and spectroscopic data are available with the corresponding author.

References

  1. Razzak SA, Faruque MO, Alsheikh AL, Alkuroud D, Alfayez A, Hossain SMZ, Hossain MM (2022) A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ Adv 7:1001682

    Google Scholar 

  2. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and Health Impacts of Air Pollution: A Review. Front Public Health 8:14

    PubMed  PubMed Central  Google Scholar 

  3. Rengaraj S, Moon SH (2002) Kinetics of adsorption of Co (II) removal from water and wastewater by ion exchange resins. Water Res 36:1783

    CAS  PubMed  Google Scholar 

  4. Siemiatycki J, Richardson L, Straif K, Latreille B, Lakhani R, Campbell S, Rousseau M-C, Boffetta P (2004) Listing occupational carcinogens. Environ Health Perspect 112:1447

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Crans DC, Kostenkova K (2020) Open questions on the biological roles of first-row transition metals. Commun Chem 3:104

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Okoro EE, Okolie AG, Sanni SE, Omeje M (2020) Toxicology of Heavy Metals to Subsurface Lithofacies and Drillers during Drilling of Hydrocarbon Wells. Sci Rep 10:6152

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cannas D, Loi E, Serra M, Firinu D, Valera P, Zavattari P (2020) Relevance of Essential Trace Elements in Nutrition and Drinking Water for Human Health and Autoimmune Disease Risk. Nutrients 12:2074

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kräutler B (2006) Cobalt: B12 Enzymes and Coenzymes. Encyclopedia Inorg Bioinorg Chem 1–20

  9. a Hall CA, Colligan PDG, Begley JA, (1981) The role of cobalamin in synthesis of protein and immunoglobulins by human peripheral lymphocytes. Nutr Res 1:349

    Google Scholar 

  10. Ospina CAC, Mesa MON (2020) B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther 26:5

    Google Scholar 

  11. Wolffenbuttel BHR, Wouters HJCM, Fokkema MRH, Klauw MMVD (2019) The Many Faces of Cobalamin (Vitamin B12) Deficiency. Mayo Clinic Proceedings: Innovations, Quality & Outcomes 3:200

    Google Scholar 

  12. Kardos J, Héja L, Simon A, Jablonkai I, Kovács R, Jemnitz K (2018) Copper signalling: causes and consequences. Cell Communication and Signaling 16:71

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Z, Yang J, Yang Y, Fang H, Xu X, Rui J, Su F, Xu H, Wang S (2017) A novel hexahydroquinazolin-2-amine-based fluorescence sensor for Cu2+ from isolongifolanone and its biological applications. RSC Adv 7:33263

    CAS  Google Scholar 

  14. Esmieu C, Guettas D, Daban AC, Sabater L, Faller P, Hureau C (2019) Copper-Targeting Approaches in Alzheimer’s Disease: How To Improve the Fallouts Obtained from in Vitro Studies. Inorg Chem 58:13509

    CAS  PubMed  Google Scholar 

  15. Qu X, He Z, Qiao H, Zhai Z, Mao Z, Yu Z, Dai K (2018) Serum copper levels are associated with bone mineral density and total fracture in the US population. J Orthop Translat 14:34

    PubMed  PubMed Central  Google Scholar 

  16. Maret W (2013) Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life. American Society for Nutrition Adv Nutr 4:82

    CAS  Google Scholar 

  17. Li D, Chen S, Bellomo EA, Tarasov EI, Kaut C, Rutter GA, Li WH (2011) Imaging dynamic insulin release using a fluorescent zinc indicator for monitoring induced exocytotic release (ZIMIR). PNAS 108:21063

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Z, Ai (2016) Single Fluorescent Protein-Based Indicators for Zinc Ion (Zn2+). Anal Chem 88:9029

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Daiyasua H, Osakaa K, Ishinob Y, Toha H (2001) Expansion of the zinc metallo-hydrolase family of the L-lactamase fold. FEBS Lett 503:1

    Google Scholar 

  20. Vergnano AM, Rebola N, Savtchenko LP, Pinheiro PS, Casado M, Kieffer BL, Rusakov DA, Mulle C, Paoletti P (2014) Zinc Dynamics and Action at Excitatory Synapses. Neuron 82:1101

    CAS  PubMed  Google Scholar 

  21. Ho E (2004) Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 15:572

    CAS  PubMed  Google Scholar 

  22. Tran AQT, Carter J, Ruffin RE, Zalewski PD (2001) The role of zinc in caspase activation and apoptotic cell death. Biometals 14:315

    Google Scholar 

  23. Chausmer AB (1998) Zinc, Insulin and Diabetes. J Am Coll Nutr 17:109

    CAS  PubMed  Google Scholar 

  24. Prasad AS (2008) Zinc in Human Health: Effect of Zinc on Immune Cells. Mol Med 14:353

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Leyssens L, Vinck B, Straeten CVD, Wuyts F, Maes L (2017) Cobalt toxicity in humans. A review of the potential sources and systemic health effects. Toxicology 387:43

  26. Kosiorek AM, Wyszkowski M (2019) Effect of cobalt on environment and living organisms -a review. Appl Ecol Environ Res 17:11419

    Google Scholar 

  27. Abebe FA, Eribal CS, Ramakrishna D, Sinn E (2011) A ‘turn-on’ fluorescent sensor for the selective detection of cobalt and nickel ions in aqueous media. Tetrahedron Lett 52:5554

    CAS  Google Scholar 

  28. Taylor AA, Tsuji JS, Garry MR, McArdle ME, William L Jr, G, Adams WJ, Menzie CA, (2020) Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. Environ Manage 65:131

    PubMed  Google Scholar 

  29. Ojida A, Sakamoto T, Inoue MA, Fujishima SH, Lippens G, Hamachi I (2009) Fluorescent BODIPY-Based Zn(II) Complex as a Molecular Probe for Selective Detection of Neurofibrillary Tangles in the Brains of Alzheimer’s Disease Patients. J Am Chem Soc 131:6543

    CAS  PubMed  Google Scholar 

  30. Jiang P, Guo Z (2004) Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord Chem Rev 248:205

    CAS  Google Scholar 

  31. Bradley WG, Mash DC (2009) Beyond Guam: The cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. Amyotroph Lateral Scler 2:7

    Google Scholar 

  32. Cuajungco MP, Lees GJ (1997) Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis 4:137

    CAS  PubMed  Google Scholar 

  33. Lee SY, Kim SY, Kim JA, Kim C (2016) A dual chemosensor: Colorimetric detection of Co2+ and fluorimetric detection of Zn2+. J Lumin 179:602

    CAS  Google Scholar 

  34. Chen NN, Zhao DJ, Sun YX, Wang DD, Ni H (2019) Long-Term Effects of Zinc Deficiency and Zinc Supplementation on Developmental Seizure-Induced Brain Damage and the Underlying GPR39/ZnT-3 and MBP Expression in the Hippocampus. Front Neurosci 13:920

    PubMed  PubMed Central  Google Scholar 

  35. Bewley RJF, Stotzky G (1983) Effects of cadmium and zinc on microbial activity in soil; influence of clay minerals. Part I: metals added individually. Sci Total Environ 31:41

  36. Wang J, Lin W, Li W (2012) Single Fluorescent Probe Displays a Distinct Response to Zn2+ and Cd2+. Chem—A European J 18:13629

  37. Park SY, Yoon JH, Hong CS, Souane R, Kim JS, Matthews SE, Vicens J (2008) A Pyrenyl-Appended Triazole-Based Calix[4]arene as a Fluorescent Sensor for Cd2+ and Zn2+. J Org Chem 73:8212

    CAS  PubMed  Google Scholar 

  38. Swamy KMK, Kim MJ, Jeon HR, Jung JY (2010) New 7-Hydroxycoumarin-Based Fluorescent Chemosensors for Zn(II) and Cd(II). Bull Korean Chem Soc 31:3611

    CAS  Google Scholar 

  39. Dong WK, Li XL, Wang L, Zhang DYJ (2016) A New Application of Salamo-Type Bisoximes: As a Relay Sensor for Zn2+/Cu2+ and Its Novel Complexes for Successive Sensing of H+/OH. Sens Actuators, B Chem 229:370

    CAS  Google Scholar 

  40. Chandramouleeswaran S, Ramkumar J (2014) Speciation Studies of Cobalt (II) and Cobalt (III) and Its Application to Sample Analysis. Indian Journal of Advances in Chemical Science 2:134

    CAS  Google Scholar 

  41. Yuan Q, Chen LL, Zhu XH, Yuan ZH, Duan YT, Yang YS, Wang BH, Wang XM, Zhu HL (2020) An imidazo[1,5-α]pyridine-derivated fluorescence sensor for rapid and selective detection of sulfite. Talanta 217:121087

    CAS  PubMed  Google Scholar 

  42. Zhu S, Lin X, Ran P, Xia Q, Yang C, Ma J, Fu Y (2017) A novel luminescence-functionalized metal-organic framework nanoflowers electrochemiluminesence sensor via “on-off” system. Biosens Bioelectron 91:436

    CAS  PubMed  Google Scholar 

  43. Volpi G, Rabezzana R (2021) Imidazo[1,5-a]pyridine derivatives: useful, luminescent and versatile scaffolds for different applications. New J Chem 45:5737

    CAS  Google Scholar 

  44. Strianese M, Brenna S, Ardizzoia GA, Guarnieri D, Lamberti M, D’Auria I, Pellecchia C (2021) Imidazo-pyridine-based zinc(II) complexes as fluorescent hydrogen sulfide probes. Dalton Trans 50:17075

    CAS  PubMed  Google Scholar 

  45. Song GJ, Bai SY, Dai X, Cao XQ, Zhao BX (2016) A ratiometric lysosomal pH probe based on the imidazo[1,5-a]pyridine–rhodamine FRET and ICT system. RSC Adv 6:41317

    CAS  Google Scholar 

  46. Renno G, Cardano F, Volpi G, Barolo C, Viscardi G, Fin A (2022) Imidazo[1,5-a]pyridine-Based Fluorescent Probes: A Photophysical Investigation in Liposome Models. Molecules 27:3856

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ge Y, Xing X, Liu A, Ji R, Shen S, Cao X (2017) A novel imidazo[1,5-a]pyridine-rhodamine FRET system as an efficient ratiometric fluorescent probe for Hg2+ in living cells. Dyes Pigm 146:136

    CAS  Google Scholar 

  48. Ge Y, Liu A, Ji R, Shen S, Cao X (2017) Detection of Hg2+ by a FRET ratiometric fluorescent probe based on a novel pyrido[1,2-a]benzimidazole-rhodamine system. Sens Actuators, B Chem 251:410

    CAS  Google Scholar 

  49. i Chen S, Li H, Hou P, (2018) A novel imidazo[1,5-α]pyridine-based fluorescent probe with a large Stokes shift for imaging hydrogen sulfide. Sens Actuators, B Chem 256:1086

    Google Scholar 

  50. Volpi G, Lace B, Garino C, Priola E, Artuso E, Vioglio PC, Barolo C, Fin A, Genre A, Prandi C (2018) New substituted imidazo[1,5-a]pyridine and imidazo[5,1-a]isoquinoline derivatives and their application in fluorescence cell imaging. Dyes Pigm 157:298

    CAS  Google Scholar 

  51. Reddy MR, Darapaneni CM, Patil RD, Kumari H (2022) Recent synthetic methodologies for imidazo[1,5-a]pyridines and related heterocycles. Org Biomol Chem 20:3440

    Google Scholar 

  52. Mala R, Suman K, Nandhagopal M, Narayanasamy M, Thennarasu S (2019) Chelation of Specific Metal Ions Imparts Coplanarity and Fluorescence in Two Imidazo[1,2-a]pyridine Derivatives: Potential Chemosensors for Detection of Metal Ions in Aqueous and Biosamples. Spectrochim Acta Part A Mol Biomol Spectrosc 222:117236

    CAS  Google Scholar 

  53. Divya D, Thennarasu S (2020) A novel isatin-based probe for ratiometric and selective detection of Hg2+ and Cu2+ ions present in aqueous and environmental samples. Spectrochim Acta Part A Mol Biomol Spectrosc 243:118796

    CAS  Google Scholar 

  54. Liu D, Zhu H, Shi J, Deng X, Zhang T, Zhao Y, Qi P, Yang G, He H (2019) A 1,8-naphthalimide-Based Fluorescent Sensor with High Selectivity and Sensitivity for Hg2+ in Aqueous Solution and Living Cells. Anal Methods 11:3150

    CAS  Google Scholar 

  55. Mu H, Gong R, Ren L, Zhong C, Sun Y, Fu E (2008) An Intramolecular Charge Transfer Fluorescent Probe: Synthesis and Selective Fluorescent Sensing of Ag+. Spectrochim Acta Part A Mol Biomol Spectrosc 70:923

    Google Scholar 

  56. Shellaiah M, Rajan YC, Balu P, Murugan A (2015) A Pyrene Based Schiff Base Probe for Selective Fluorescence Turn-On Detection of Hg2+ Ions with Live Cell Application. New J Chem 39:2523

    CAS  Google Scholar 

  57. Parthiban C, Ciattini S, Chelazzi L, Elango KP (2016) Colorimetric Sensing of Anions by Cu (II), Co (II), Ni (II) and Zn (II)–Complexes of Naphthoquinone Imidazole Hybrid Influence of Complex Formation on Selectivity and Sensing Medium. Sens Actuators, B Chem 231:768

    CAS  Google Scholar 

  58. Dong WK, Akogun SF, Zhang Y, Sun YX, Dong XY (2017) A Reversible, “Turn-On” Fluorescent Sensor for Selective Detection of Zn2+. Sens Actuators, B Chem 238:723

    CAS  Google Scholar 

  59. Roy N, Pramanik HAR, Paul PC, Singh ST (2014) A Sensitive Schiff-Base Fluorescent Chemosensor for the Selective Detection of Zn2+. J Fluoresc 24:1099

    PubMed  Google Scholar 

  60. Yang Z, Yan C, Chen Y, Zhu C, Zhang C, Dong X, Yang W, Guo Z, Lu Y, He W (2011) A novel terpyridine/benzofurazan hybrid fluorophore: metal sensing behavior and application. Dalton Trans 40:2173

    CAS  PubMed  Google Scholar 

  61. Tetteh S (2018) Coordination Behavior of Ni2+, Cu2+, and Zn2+ in Tetrahedral 1-Methylimidazole Complexes: A DFT/CSD Study. Bioinorg Chem Appl 2018:3157969

    PubMed  PubMed Central  Google Scholar 

  62. Janakipriya S, Tamilmani S, Thennarasu S (2016) A novel 2-(2′-aminophenyl)benzothiazole derivative displays ESIPT and permits selective detection of Zn2+ ions: experimental and theoretical studies. RSC Adv 6:71496

    CAS  Google Scholar 

  63. Mohammed HA, Sert Y, Albayati YR, Dege N, Sen F (2022) Structure Elucidation, Hirshfeld Surface Analysis, Molecular Docking and Computational Studies of a Jahn-Teller Distorted Octahedral Cobalt (II) Complex with Saccharin Ligand. Polycyclic Aroma Compd. https://doi.org/10.1080/10406638.2022.2089702

  64. Wang HF, Wu SP (2013) A pyrene-based highly selective turn-on fluorescent sensor for copper (II) ions and its application in living cell imaging. Sens Actuators, B Chem 181:743

    CAS  Google Scholar 

  65. Chae JB, Lee H, Kim C (2020) Determination of Zinc Ion by a Quinoline-Based Fluorescence Chemosensor. J Fluoresc 30:347

    CAS  PubMed  Google Scholar 

  66. Kim A, Kang JH, Jang HJ, Kim C (2018) Fluorescent Detection of Zn (II) and In (III) and Colorimetric Detection of Cu (II) and Co (II) by a Versatile Chemosensor. J Ind Eng Chem 65:290

    CAS  Google Scholar 

  67. Vongnam K, Aree T, Sukwattanasinitt M (2018) Aminoquinoline-salicylaldimine Dyads as Highly Selective Turn-On Fluorescent Sensors for Zinc (II) Ions. ChemistrySelect 3:3495

    CAS  Google Scholar 

  68. Sohrabi M, Amirnasr M, Farrokhpour H, Meghdadi S (2017) A Single Chemosensor with Combined Ionophore/Fluorophore Moieties Acting as a Fluorescent “Off-On” Zn2+ Sensor and a Colorimetric Sensor for Cu2+: Experimental, Logic Gate Behavior and TD-DFT Calculations. Sens Actuators, B Chem 250:647

    CAS  Google Scholar 

  69. Park GJ, Lee JJ, You GR, Nguyen L, Noh I, Kim C (2015) A Dual Chemosensor for Zn2+ and Co2+ in Aqueous Media and Living Cells: Experimental and Theoretical Studies. Sens Actuators, B Chem 223:509

    Google Scholar 

Download references

Acknowledgements

One of the authors, DD is thankful to DST, New Delhi for INSPIRE Fellowship. MR, thanks the UGC, New Delhi, India, for Senior Research Fellowship. Financial support from CSIR-CLRI MLP12 project is acknowledged. We thank the Department of Chemistry, Pondicherry University, for Q-TOF analysis.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Dhakshinamurthy Divya: Conceptualization, Data collection, Investigation, Methodology, Writing – original draft, Writing – review & editing. Ramanjaneyulu Mala: Data collection, data processing and interpretation. Manivannan Nandhagopal: Cell imaging experiments. Mathivanan Narayanasamy: Cell imaging experiments. Sathiah Thennarasu: Conceptualization, Formal Analysis, Supervision, Validation, Visualization, Writing – review & editing.

Corresponding author

Correspondence to Sathiah Thennarasu.

Ethics declarations

Ethics Approval

Not Applicable.

Competing Interests

The authors declare no competing or conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Two new imidazo[1,2-a]pyridine congeners bearing methyl carboxylate (1) and sodium carboxylate (2) moieties were synthesized using Ugi type reaction and characterized using 1H, 13C-NMR, HRMS, and single crystal-XRD techniques.

• Lack of involvement of methyl carboxylate at 8-position in complex formation leads to selective interaction of 1 with only Zn2+ and offers a fluorescence turn-on response with a detection limit value 3.804 × 10−7 M.

• Involvement of carboxylate anion at 8-position in complex formation favors selective quenching of fluorescence from 2 by only Co2+ and Cu2+ and enhances the detection limit by an order of magnitude (0.420 × 10−7 M for Co2+ and 0.304 × 10−7 M for Cu2+).

• Suitability of both 1 and 2 for naked-eye detection, cell imaging and quantitative determination of contaminated metal ions present in industrial, environmental and biological samples is demonstrated.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18632 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divya, D., Mala, R., Nandhagopal, M. et al. Coordination of Distal Carboxylate Anion Alters Metal Ion Specific Binding in Imidazo[1,2-a]pyridine Congeners. J Fluoresc 33, 1397–1412 (2023). https://doi.org/10.1007/s10895-022-03122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03122-x

Keywords

Navigation