Skip to main content
Log in

Multi-conformational Luminescence and Phosphorescence of Few Phenazine 1,2,3-triazole Molecules

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Dropcast films produced from blends solutions of phenazine 1,2,3-triazole molecules in very low concentrations in a 1,3-Bis (N-carbazolyl) benzene (mCP) matrix were investigated at room tem-perature. The mCP acts as an optically inert matrix, having no influence on the emission properties of the guest molecules. Its conductive properties ensure the blend films as completely organic active layers. The fluorescent and phosphorescent emissions of the guest molecules in blue, green, red and also in white are relatively intense, without the need to mix different organic materials. The excitation of the system occurs directly by the incident laser beam on the films. The steady-state spectroscopy for the blue monomer and green dimer singlet fluorescence emissions were investigated. The analysis of their temporal decays was done using a different approach based on the Exponentially Modified Gaussian function. The phosphorescent emissions of the triplet steady-states, in the orange or in the red wavelength regions, were observed to be correlated, respectively, to the formation of guest monomers or to the guest dimers singlet states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hirata Y, Tanaka I (1976) Chem Phys Lett 43(3):568

    Article  CAS  Google Scholar 

  2. Grabowska A (1967) Chem Phys Lett 1:113

    Article  CAS  Google Scholar 

  3. Pavlopoulos TG (1987) Spectrochim Acta 43A:715

    Article  CAS  Google Scholar 

  4. DelBarrio JI, Rebato JR, Tablas FMG (1989) J Phys Chem 93:6836

    Article  CAS  Google Scholar 

  5. Kuz’min VA, Levin PP (1988) Bull Acad Sci USSR Div Chem Sci 37:1098

  6. Singh MK, Pal H, Bhasikuttan AC, Sapre AV (1998) Photochem Photobiol 68:32

    Article  CAS  Google Scholar 

  7. Carvalho CEM, Brinn IM, Pinto AV, Pinto MCFR (2000) J Photochem Photobiol A 136(Part 3):25

  8. Gaertner G, Grey A, Holliman FG (1962) Tethahedron 18:1105

    Article  CAS  Google Scholar 

  9. Grey A, Holliman FG (1962) Tethahedron 18:1095

    Article  Google Scholar 

  10. Jardim GAM, Calado HDR, Cury LA, da Silva Júnior EN (2015) Eur J Org Chem (4):703

  11. Rangreez TA, Asiri AM, Alhogbi BG, Naushad M (2017) Int J Environ Res Public Health 14:828

  12. Mukherjee S, Thilagar P (2015) Chem Commun 51:10988

    Article  CAS  Google Scholar 

  13. Xu Z, Climent C, Brown CM, Hean D, Bardeen CJ, Casanova D, Wolf MO (2021) Chem Sci 12:188

    Article  CAS  Google Scholar 

  14. Ogiwara T, Wakikawa Y, Ikoma T (2015) J Phys Chem A 119(14):3415

    Article  CAS  Google Scholar 

  15. Hosokai T, Matsuzaki H, Nakanotani H, Tokumaru K, Tsutsui T, Furube A, Nasu K, Nomura H, Yahiro M, Adachi C (2017) Sci Adv 3:e1603282

  16. dos Santos PL, Etherington MK, Monkman AP (2018) J Mater Chem C 6:4842

    Article  Google Scholar 

  17. Yin X, He Y, Wang X, Wu Z, Pang E, Xu J, Wang JA (2020) Front Chem 8:725. https://doi.org/10.3389/fchem.2020.00725

  18. Costa BBA, Souza PDC, Gontijo RN, Jardim GAM, Moreira RL, da Silva Júnior EN, Cury LA (2018) Chem Phys Lett 695:176

  19. Costa BBA, Jardim GAM, Santos PL, Calado HDR, Monkman AP, Dias FB, da Silva Júnior EN, Cury LA (2017) Phys Chem Chem Phys 19:3473

  20. dos Santos PL, Silveira OJ, Huang R, Jardim GAM, Matos MJS, da Silva Júnior EN, Monkman AP, Dias FB, Cury LA (2019) Phys Chem Chem Phys 21:3814

  21. Soares GHR, Jardim GAM, da Silva Júnior EN, Cury LA (2019) Phys Chem Chem Phys 21:21966

  22. Kalambet Y, Kozmin Y, Mikhailova K, Nagaev I, Tikhonov P (2011) J Chemom 25:352

    Article  CAS  Google Scholar 

  23. Grushka E (1972) Anal Chem 44:1733–1738

    Article  CAS  Google Scholar 

  24. Golubev A (2017) Comput Math Methods Med 7925106:8

  25. Fournier B, Coppens P (2012) J Synchrotron Rad 19:497–502

    Article  Google Scholar 

  26. Bochsler P, Petersen L, Mobius E, Schwadron NA, Wurz P, Scheer JA, Fuselier SA, McComas DJ, Bzowski M, Frisch PC (2012) Astrophys J Suppl Ser 198:13(5pp)

  27. Snedden EW, Cury LA, Bourdakos KN, Monkman AP (2010) Chem Phys Lett 490:76–79

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Brazilian agencies: FAPEMIG, CNPq and CAPES for the financial support.

Suggesting reviewers:

1 – Dr. Pablo Bianucci – Université Concordia, Montreal Canada, Pablo.bianucci@concordia.ca

2 – Emmanuelle Deleporte – Ecole Normale Supérieure, Paris, Saclay, France Emmanuelle.deleporte@ens-paris-saclay.fr

3 – Olivier Plantevin – plantevin@csnsm.in2p3.fr

4 – Robson Ferreira – Département de Physique – Ecole Normale Supérieure, Paris, Cedex 05 – France Robson.ferreira@lpmc.ens.fr

Funding

The authors are grateful to Brazilian agencies: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by PBP, KCTC, ENSJ and LAC. The first draft of the manuscript was written by LAC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luiz A. Cury.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

− Spectroscopy of few interacting molecules of phenazine 1,2,3-triazole.

– Conductive blend layers using the1,3-Bis (N-carbazolyl) benzene matrix.

– Room temperature high fluorescence and phosphorescence intensities.

– Decays of monomer and dimer singlet states.

– Exponentially Modified Gaussian function as a new approach to the decays.

– Orange or red phosphorescence due to monomer or dimer states formation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, P.B., da Cruz, K.C.T., da Silva Júnior, E.N. et al. Multi-conformational Luminescence and Phosphorescence of Few Phenazine 1,2,3-triazole Molecules. J Fluoresc 32, 1299–1308 (2022). https://doi.org/10.1007/s10895-022-02939-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02939-w

Keywords

Navigation