Skip to main content
Log in

Tailoring Niosomes- Implications for Controlled Cargo Release and Function as Nanoreactors

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Nonionic surfactant vesicles (Niosomes) were prepared using polyoxyethylene alkyl ether (Brij 58).The impact of variation of the Brij: cholesterol molar ratio on the niosomal structure was studied. Fluorescence studies performed with the membrane probe 1,6-Diphenyl-1,3,5-triene (DPH) gave important insight on the bilayer integrity of the niosomes in response to environmental perturbations. The aim of the work being assessment of the efficacy of the niosomes as “drug release vehicles”, release studies were performed with a xanthene dye Carboxyfluorescein (CF). Further, the vesicles were used as nanoreactors for the synthesis of gold nanoparticles (GNPs) as it is often useful to house nanoparticles in biological /biomimicking environments. Stable, spherical GNPs of diameter 6–10 nm were formed in these vesicles. As the vesicular bilayer mimics the cell membrane, the present work is relevant to the use of the GNPs for diagnostic and therapeutic purpose. It has also been established that fluorescence resonance energy transfer (FRET) effectively occurs between DPH and CF in the niosomes. The FRET studies provide important insight on the location of dyes within the vesicles thus indicating the prospective applications of this fluorescence technique for tracking the location of probes in biomimicking systems which maybe extrapolated to in vivo biological systems in future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All the data that have been referred to in the manuscript without being included have been given in the Supplementary Section.

Code Availability

Not applicable.

References

  1. Grit M, Crommelin DJA (1993) Liposomes Chemical stability of liposomes: implications for their physical stability. Chem Phys Lipids 64:3–18. https://doi.org/10.1016/0009-3084(93)90053-6

    Article  CAS  PubMed  Google Scholar 

  2. Uchegbu IF, Vyas SP (1998) Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172(1–2):33–70. https://doi.org/10.1016/S0378-5173(98)00169-0

    Article  CAS  Google Scholar 

  3. Uchegbu IF (ed) (2000) Synthetic Surfactant Vesicles: Niosomes and Other NonPhospholipid Vesicular Systems Drug Targeting and Delivery, vol 11. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  4. Yoshioka T, Sternberg B (1994) Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). Int J Pharm 105:1–6. https://doi.org/10.1016/0378-5173(94)90228-3

    Article  CAS  Google Scholar 

  5. Santucci E, Carafa M, Coviello T, Murtas E, Riccieri FM, Alhaique F, Modesti A, Modica A (1996) Vesicles from polysorbate 20 and cholesterol A simple preparation and a characterization. STP Pharm Sci 6:29–32

    Google Scholar 

  6. Handjani-Vila RM, Ribier A, Rondot B, Vanlerberghie G (1979) Dispersions of lamellar phases of non-ionic lipids in cosmetic products. Int J Cosmetic Sci 1:303–314. https://doi.org/10.1111/j.1467-2494.1979.tb00224.x

    Article  CAS  Google Scholar 

  7. Vyas SP, Khar PK (2012) Targeted and controlled drug delivery -novel carrier systems, 1st edn. CBS Publishers, New Delhi, India

    Google Scholar 

  8. Schreier H, Bouwstra J (1994) Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Control Release 30:1–15. https://doi.org/10.1016/0168-3659(94)90039-6

    Article  CAS  Google Scholar 

  9. Baillie AJ, Florence AT, Hume LR, Muirhead GT, Rogerson A (1985) The preparation and properties of niosomes—non-ionic surfactant vesicles. J Pharm Pharmacol 37:863–868. https://doi.org/10.1111/j.2042-7158.1985.tb04990.x

    Article  CAS  PubMed  Google Scholar 

  10. Hofland HEJ, Bouwstra JA, Ponec M, Bodde HE, Sples F, Verbaef JC, Junginger HE (1991) Interactions of non-ionic surfactant vesicles with cultured keratinocytes and human skin in vitro: a survey of toxicological aspects and ultrastructural changes in stratum corneum. J Control Release 16:155–167. https://doi.org/10.1016/0168-3659(91)90039-G

    Article  CAS  Google Scholar 

  11. Uchegbu IF, Florence AT (1995) Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry. Adv Colloid Interface Sci 58:1–55. https://doi.org/10.1016/0001-8686(95)00242-I

    Article  CAS  Google Scholar 

  12. Aschi M, D’Archivio AA, Fontana A, Formiglio A (2008) Physicochemical Properties of Fluorescent Probes: Experimental and Computational Determination of the Overlapping pKa Values of Carboxyfluorescein. J Org Chem 73:3411–3417. https://doi.org/10.1021/jo800036z

    Article  CAS  PubMed  Google Scholar 

  13. Tobey SL, Anslyn EV (2003) Determination of Inorganic Phosphate in Serum and Saliva Using a Synthetic Receptor. Org Lett 5:2029–2031. https://doi.org/10.1021/ol034427x

    Article  CAS  PubMed  Google Scholar 

  14. Lambert TN, Andrews NL, Gerung H, Boyle TJ, Oliver JM, Wilson BS, Han SM (2007) Water-Soluble Germanium(0) Nanocrystals: Cell Recognition and Near-Infrared Photothermal Conversion Properties. Small 3:691–699. https://doi.org/10.1002/smll.200600529

    Article  CAS  PubMed  Google Scholar 

  15. Ralston E, Hjelmeland LM, Klausner RD, Weinstein JN, Blumenthal R (1981) Carboxyfluorescein as a probe for liposome-cell interactions effect of impurities and purification of the dye. Biochim Biophys Acta 649:133–137. https://doi.org/10.1016/0005-2736(81)90019-5

    Article  CAS  Google Scholar 

  16. Esbjörner EK, Lincoln P, Nordén B (2007) Counterion-mediated membrane penetration: Cationic cell-penetrating peptides overcome Born energy barrier by ion-pairing with phospholipids. Biochim Biophys Acta 1768:1550–1558. https://doi.org/10.1016/j.bbamem.2007.03.004

    Article  CAS  PubMed  Google Scholar 

  17. Mills JK, Needham D (2005) Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition. Biochim Biophys Acta Biomembr 1716:77–96. https://doi.org/10.1016/j.bbamem.2005.08.007

    Article  CAS  Google Scholar 

  18. Hollmann A, Delfederico L, Glikmann G, De Antoni G, SemorileL DEA (2007) Characterization of liposomes coated with S-layer proteins from lactobacilli. Biochim Biophys Acta Biomembr 1768:393–400. https://doi.org/10.1016/j.bbamem.2006.09.009

    Article  CAS  Google Scholar 

  19. Shinitzky M, Yuli I (1982) Lipid fluidity at the submacroscopic level: Determination by fluorescence polarization. Chem Phys Lipids 30:261–282. https://doi.org/10.1016/0009-3084(82)90054-8

    Article  CAS  Google Scholar 

  20. Andrich P, Vanderkooi JM (1976) Temperature dependence of 1,6-diphenyl-1,3,5-hexatriene fluorescence in phospholipid artificial membranes. Biochemistry 15:1257–1261. https://doi.org/10.1021/bi00651a013

    Article  CAS  PubMed  Google Scholar 

  21. Fairclough RH, Cantor CR (1978) The use of singlet-singlet energy transfer to study macromolecular assemblies. Methods Enzymol 48:347–379. https://doi.org/10.1016/s0076-6879(78)48019-x

    Article  CAS  PubMed  Google Scholar 

  22. Stryer L (1978) Fluorescence Energy Transfer as a Spectroscopic Ruler. Annu Rev Biochem 47:819–846. https://doi.org/10.1146/annurev.bi.47.070178.004131

    Article  CAS  PubMed  Google Scholar 

  23. Förster T (2012) Energy migration and fluorescence. J Biomed Opt 17:011002. https://doi.org/10.1117/1.JBO.17.1.011002

    Article  PubMed  Google Scholar 

  24. Rohatgi-Mukherjee KK (1986) Fundamentals of Photochemistry. Wiley Eastern, New Delhi, India

    Google Scholar 

  25. Singer SJ, Nicolson GL (1972) The Fluid Mosaic Model of the Structure of Cell Membranes. Science 175:720–731. https://doi.org/10.1126/science.175.4023.720

    Article  CAS  PubMed  Google Scholar 

  26. Davenport L, Dale RE, Bisby RH, Cundall RB (1985) Transverse location of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in model lipid bilayer membrane systems by resonance excitation energy transfer. Biochemistry 24:4097–4108. https://doi.org/10.1021/bi00336a044

    Article  CAS  PubMed  Google Scholar 

  27. Chakrabarty D, Hazra P, Chakraborty A, Sarkar N (2004) Dynamics of solvation and rotational relaxation in neutral Brij 35 and Brij 58 micelles. Chem Phys Lett 392:340–347. https://doi.org/10.1016/j.cplett.2004.05.084

    Article  CAS  Google Scholar 

  28. De S, Mandal RP (2016) Self-Assembled Cell-Mimicking Vesicles Composed of Amphiphilic Molecules: Structure and Applications. In: Ohshima H (ed) Encyclopedia of Biocolloid and Biointerface Science. John Wiley & Sons Inc., Hoboken, pp 292–312. https://doi.org/10.1002/9781119075691.ch23

    Chapter  Google Scholar 

  29. Elliott MA, Walter GA, Swift A, Vandenborne K, Schotland JC, Leigh JS (1999) Spectral quantitation by principal component analysis using complex singular value decomposition. Mag Res Med 41:450–455. https://doi.org/10.1002/(SICI)1522-2594(199903)41:3<450::AID-MRM4>3.0.CO;2-9

    Article  CAS  Google Scholar 

  30. De S, Kundu R, Biswas A (2012) Synthesis of gold nanoparticles in niosomes. J Colloid Interf Sci 386:9–15. https://doi.org/10.1016/j.jcis.2012.06.073

    Article  CAS  Google Scholar 

  31. Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR (2012) Niosomes: Novel sustained release nonionic stable vesicular systems — An overview. Adv Colloid Interface Sci 183–184:46–54. https://doi.org/10.1016/j.cis.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  32. Gao W, Zhang Q, Liu P, Zhang S, Zhang J, Chen L (2014) Trail of pore shape and temperature-sensitivity of poly(N-isopropylacrylamide) hydrogels before and after removing Brij-58 template and pore formation mechanism. RSC Adv 4:34460–34469. https://doi.org/10.1039/C4RA05780E

    Article  CAS  Google Scholar 

  33. Liu YS, Wen CF, Yang YM (2012) Development of ethosome-like catanionic vesicles for dermal drug delivery. J Taiwan Institute Chem Eng 43:830–838. https://doi.org/10.1016/j.jtice.2012.06.008

    Article  CAS  Google Scholar 

  34. Lee WH, Tang YL, Chiu TC, Yang YM (2015) Synthesis of Ion-Pair Amphiphiles and Calorimetric Study on the Gel to Liquid-Crystalline Phase Transition Behavior of Their Bilayers. J Chem Eng Data 60:1119–1125. https://doi.org/10.1021/je501079n

    Article  CAS  Google Scholar 

  35. Kuo AT, Chang CH (2014) Cholesterol-Induced Condensing and Disordering Effects on a Rigid Catanionic Bilayer: A Molecular Dynamics Study. Langmuir 30:55–62. https://doi.org/10.1021/la403676w

    Article  CAS  PubMed  Google Scholar 

  36. Sasaki S, Ishibashi K, Nagai T, Marumo F (1992) Regulation mechanisms of intracellular pH of Xenopus laevis oocyte. Biochim Biophys Acta 1137:45–51. https://doi.org/10.1016/0167-4889(92)90098-v

    Article  CAS  PubMed  Google Scholar 

  37. Jizomoto H, Kanaoka E, Hirano K (1994) pH-Sensitive liposomes composed of tocopherol hemisuccinate and of phosphatidylethanolamine including tocopherol hemisuccinate. Biochim Biophys Acta 1213:343–348. https://doi.org/10.1016/0005-2760(94)00057-3

    Article  CAS  PubMed  Google Scholar 

  38. Selwyn JE, Steinfield JI (1972) Aggregation of equilibriums of xanthene dyes. J Phys Chem 76:762–774. https://doi.org/10.1021/j100649a026

    Article  CAS  Google Scholar 

  39. Kasha M, El-Bayoumi MA (1961) Energy Transfer in Hydrogen-Bonded N-Heterocyclic Complexes and Their Possible Role as Energy Sinks. J Chem Phys 34:2181. https://doi.org/10.1063/1.1731841

    Article  Google Scholar 

  40. Das S, Chattopadhyay AP, De S (2008) Controlling J aggregation in fluorescein by bile salt hydrogels. J Photochem Photobio A 197:402–414. https://doi.org/10.1016/j.jphotochem.2008.02.003

    Article  CAS  Google Scholar 

  41. Aguilera OV, Neckers DC (1989) Aggregation phenomena in xanthene dyes. Acc Chem Res 22:171–177. https://doi.org/10.1021/ar00161a002

    Article  Google Scholar 

  42. De S, Das S, Girigoswami A (2005) Environmental effects on the aggregation of some xanthene dyes used in lasers. Spectrochim Acta A 61:1821–1833. https://doi.org/10.1016/j.saa.2004.06.054

    Article  CAS  Google Scholar 

  43. Chaudhuri R, Arbeloa FL, Arbeloa IL (2000) Spectroscopic Characterization of the Adsorption of Rhodamine 3B in Hectorite. Langmuir 16:1285–1291. https://doi.org/10.1021/la990772c

    Article  CAS  Google Scholar 

  44. Homg ML, Quitevis EL (1993) Excited-State Dynamics of Polymer-Bound J-Aggregates. J Phys Chem 97:12408–12415. https://doi.org/10.1021/j100149a049

    Article  Google Scholar 

  45. Rousseau E, Koetse MM, der Auweraer MV, De Schryver FC (2002) Comparison between J-aggregates in a self-assembled multilayer and polymer-bound J-aggregates in solution: a steady-state and time-resolved spectroscopic study. Photochem Photobiol Sci 1:395–406. https://doi.org/10.1039/B201690G

    Article  CAS  PubMed  Google Scholar 

  46. Lakowicz JR, Gryczynski I, Gryczynski Z, Dattelbaum JD (1999) Anisotropy-Based Sensing with Reference Fluorophores. Anal Biochem 267:397–405. https://doi.org/10.1006/abio.1998.3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ohtani Y, Irie T, Uekama K, Fukunaga K, Pitha J (1989) Differential effects of α-, β- and γ-cyclodextrins on human erythrocytes. Eur J Biochem 186:17–22. https://doi.org/10.1111/j.1432-1033.1989.tb15171.x

    Article  CAS  PubMed  Google Scholar 

  48. Roux M, Perly B, Pilard FD (2007) Self-assemblies of amphiphilic cyclodextrins. Eur Biophys J 36:861–867. https://doi.org/10.1007/s00249-007-0207-6

    Article  CAS  PubMed  Google Scholar 

  49. Coleman AW, Nicols I, Keller N, Dalbiez JP (1992) Aggregation of cyclodextrins: An explanation of the abnormal solubility of β-cyclodextrin. J Incl Phenom Macrocycl Chem 13:139–143. https://doi.org/10.1007/BF01053637

    Article  CAS  Google Scholar 

  50. Shaikh M, Mohanty J, Sundararajan M, Bhasikuttan AC, Pal H (2012) Supramolecular Host-Guest Interactions of Oxazine-1 Dye with β- and γ-Cyclodextrins: A Photophysical and Quantum Chemical Study. J Phys Chem B 116:12450–12459. https://doi.org/10.1021/jp3087368

    Article  CAS  PubMed  Google Scholar 

  51. Kawato S, Kinosita K Jr, Ikegami A (1977) Dynamic Structure of Lipid Bilayers Studied by Nanosecond Fluorescence Techniques. Biochemistry 16:2319–2324. https://doi.org/10.1021/bi00630a002

    Article  CAS  PubMed  Google Scholar 

  52. Cehelnik ED, Cundall RB, Lockwood JR, Palmer TF (1974) 1,6-Diphenyl-1,3,5-hexatriene as a fluorescence standard. Chem Phys Lett 27:586–588. https://doi.org/10.1016/0009-2614(74)80311-8

    Article  CAS  Google Scholar 

  53. Cehelnik ED, Cundall RB, Lockwood JR, Palmer TF (1975) Solvent and Temperature Effects on the Fluorescence of all-trans- 1,6-Diphenyl-1,3,5-hexatriene. J Phys Chem 79:1369–1376. https://doi.org/10.1021/j100581a008

    Article  CAS  Google Scholar 

  54. Lentz BR (1993) Use of fluorescent probes to monitor molecular order and motions within liposome bilayers. Chem Phys Lipids 64:99–116. https://doi.org/10.1016/0009-3084(93)90060-g

    Article  CAS  PubMed  Google Scholar 

  55. Lentz BR (1989) Membrane “fluidity” as detected by diphenylhexatriene probes. Chem Phys Lipids 50:171–190. https://doi.org/10.1016/0009-3084(89)90049-2

    Article  CAS  Google Scholar 

  56. Ákerlof G, Oliver SA (1936) The Dielectric Constant of Dioxane-Water Mixtures between 0 and 80°. J Am Chem Soc 58:1241–1243. https://doi.org/10.1021/ja01298a044

    Article  Google Scholar 

Download references

Acknowledgements

S. Sarkar thanks DST, India for the research fellowship [No. DST/INSPIRE Fellowship/2016/IF160188]. S De thanks SERB, New Delhi for generous grant of the scheme [file no. EMR/2014/000435]. We acknowledge CRNN, University of Calcutta, and IIT Kharagpur for TEM studies. We thank Dr. Pradipta Purkayastha, IISER Kolkata, for time-resolved studies, Dr. T Basu, Department of Biophysics and Biochemistry and Dr. S. Bhattacharya, Department of Physics, University of Kalyani, for DLS and DSC measurements.

Funding

S. Sarkar thanks DST, Government of India for the research fellowship [No. DST/INSPIRE Fellowship/2016/IF160188]. S De thanks SERB, New Delhi for generous grant of the scheme [file no. EMR/2014/000435].

Author information

Authors and Affiliations

Authors

Contributions

Sudeshna Sarkar—Conceptualization; Data curation; Formal analysis; Investigation; Methodology, Software; Validation; Visualization; Roles/Writing – original draft; Swati De—Conceptualization; Data curation; Funding acquisition; Project administration; Resources; Supervision; Visualization; Writing – review & editing.

Corresponding author

Correspondence to Swati De.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest/Competing Interests

The authors declare that there is no competing financial interest or any other conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10410 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., De, S. Tailoring Niosomes- Implications for Controlled Cargo Release and Function as Nanoreactors. J Fluoresc 32, 907–920 (2022). https://doi.org/10.1007/s10895-022-02894-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02894-6

Keywords

Navigation