Skip to main content
Log in

One-Pot Hydrothermal Synthesis of Carbon Quantum Dots with Excellent Photoluminescent Properties and Catalytic Activity from Coke Powders

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Water-soluble, high quantum yield, green color carbon quantum dots (CQDs) are prepared by acid reflux with the use of coke powders as a carbon source. The CQDs are characterized by UV–Vis absorption spectroscopy, fluorescence spectroscopy, transmission electron microscope, fourier transform infrared spectrophotometer and x-ray diffraction. The analysis includes the evaluation of key variables with effect in the synthetic process of the quantum yield (QY) of CQDs: the reaction temperature and time, the volume of mixed acid (concentrated H2SO4 and HNO3) and the pH value on the structure and properties of as-prepared CQDs. The results revealed that the optimal hydrothermal synthesis conditions for obtaining CQDs are reaction at 100 °C for 8 h, with the volume of mixed acid is 16 mL, at pH value 9. The prepared CQDs have the activity of peroxidase-like and that quantum yield(QY)reached 34.27%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang X, Qu K, Xu B, Ren J, Qu X (2011) Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J Mater Chem 21(8):2445–2450. https://doi.org/10.1039/c0jm02963g

    Article  CAS  Google Scholar 

  2. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49(26):4430–4434. https://doi.org/10.1002/anie.200906154

    Article  CAS  Google Scholar 

  3. Gu N, Li Y, Wang M, Cao M (2013) Nano-opto-electronics for biomedicine. Chin Sci Bull 58(21):2521–2529. https://doi.org/10.1007/s11434-013-5917-9

    Article  Google Scholar 

  4. Zhuo S, Shao M, Lee S (2012) Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano 6(2):1059–1064. https://doi.org/10.1021/nn2040395

    Article  CAS  PubMed  Google Scholar 

  5. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744. https://doi.org/10.1002/anie.200906623

    Article  CAS  Google Scholar 

  6. Bruneau A, Fortier M, Gagne F, Gagnon C, Turcotte P, Tayabali A, Davis TA, Auffret M, Fournier M (2015) In vitro immunotoxicology of quantum dots and comparison with dissolved cadmium and tellurium. Environ Toxicol 30(1):9–25. https://doi.org/10.1002/tox.21890

    Article  CAS  PubMed  Google Scholar 

  7. Strtak A, Sathiamoorthy S, Tang PS, Tsoi KM, Song F, Anderson JB, Chan WCW, Shin JA (2017) Yeast populations evolve to resist CdSe quantum dot toxicity. Bioconjug Chem 28(4):1205–1213. https://doi.org/10.1021/acs.bioconjchem.7b00056

    Article  CAS  PubMed  Google Scholar 

  8. Bruneau A, Fortier M, Gagne F, Gagnon C, Turcotte P, Tayabali A, Davis TL, Auffret M, Fournier M (2013) Size distribution effects of cadmium tellurium quantum dots (CdS/CdTe) immunotoxicity on aquatic organisms. Environ Sci: Process Impacts 15(3):596–607. https://doi.org/10.1039/c2em30896g

    Article  CAS  Google Scholar 

  9. Beke D, Szekrényes Z, Pálfi D, Róna G, Balogh I, Maák PA, Katona G, Czigány Z, Kamarás K, Rózsa B, Buday L, Vértessy B, Gali A (2012) Silicon carbide quantum dots for bioimaging. J Mater Res 28(2):205–209. https://doi.org/10.1557/jmr.2012.296

    Article  CAS  Google Scholar 

  10. Yang Y, Cui J, Zheng M, Hu C, Tan S, Xiao Y, Yang Q, Liu Y (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun (Camb) 48(3):380–382. https://doi.org/10.1039/c1cc15678k

    Article  CAS  Google Scholar 

  11. Guo L, Li L, Liu M, Wan Q, Tian J, Huang Q, Wen Y, Liang S, Zhang X, Wei Y (2018) Bottom-up preparation of nitrogen doped carbon quantum dots with green emission under microwave-assisted hydrothermal treatment and their biological imaging. Mater Sci Eng C Mater Biol Appl 84:60–66. https://doi.org/10.1016/j.msec.2017.11.034

    Article  CAS  PubMed  Google Scholar 

  12. Dey S, Chithaiah P, Belawadi S, Biswas K, Rao CNR (2013) New methods of synthesis and varied properties of carbon quantum dots with high nitrogen content. J Mater Res 29(3):383–391. https://doi.org/10.1557/jmr.2013.295

    Article  CAS  Google Scholar 

  13. Zhao Q, Zhang Z, Huang B, Peng J, Zhang M, Pang D (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun (41):5116–5118. https://doi.org/10.1039/b812420e

  14. Wang J, Wang CF, Chen S (2012) Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew Chem Int Ed 51(37):9297–9301. https://doi.org/10.1002/anie.201204381

    Article  CAS  Google Scholar 

  15. Ming H, Ma Z, Liu Y, Pan K, Yu H, Wang F, Kang Z (2012) Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans 41(31):9526–9531. https://doi.org/10.1039/c2dt30985h

    Article  CAS  PubMed  Google Scholar 

  16. Long Y, Zhou C, Zhang Z, Tian Z, Bao L, Lin Y, Pang D (2012) Shifting and non-shifting fluorescence emitted by carbon nanodots. J Mater Chem 22(13):5917–5920. https://doi.org/10.1039/c2jm30639e

    Article  CAS  Google Scholar 

  17. Jaiswal A, Ghosh SS, Chattopadhyay A (2012) One step synthesis of C-dots by microwave mediated caramelization of poly (ethylene glycol). Chem Commun 48(3):407–409. https://doi.org/10.1039/c1cc15988g

    Article  CAS  Google Scholar 

  18. Hsu P, Chang H (2012) Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem Commun 48(33):3984–3986. https://doi.org/10.1039/c2cc30188a

    Article  CAS  Google Scholar 

  19. Chandra S, Das P, Bag S, Laha D, Pramanik P (2011) Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale 3(4):1533–1540. https://doi.org/10.1039/c0nr00735h

    Article  CAS  PubMed  Google Scholar 

  20. Ding L, Zhou P, Zhan H, Chen C, Hu W, Zhou T, Lin C (2013) Microwave-assisted synthesis of l-glutathione capped ZnSe QDs and its interaction with BSA by spectroscopy. J Lumin 142:167–172. https://doi.org/10.1016/j.jlumin.2013.04.008

    Article  CAS  Google Scholar 

  21. Wang R, Wang X, Sun Y (2017) One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. Sensors Actuators B Chem 241:73–79. https://doi.org/10.1016/j.snb.2016.10.043

    Article  CAS  Google Scholar 

  22. Shi L, Li X, Li Y, Wen X, Li J, Choi MMF, Dong C, Shuang S (2015) Naked oats-derived dual-emission carbon nanodots for ratiometric sensing and cellular imaging. Sensors Actuators B Chem 210:533–541. https://doi.org/10.1016/j.snb.2014.12.097

    Article  CAS  Google Scholar 

  23. Liu W, Diao H, Chang H, Wang H, Li T, Wei W (2017) Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sensors Actuators B Chem 241:190–198. https://doi.org/10.1016/j.snb.2016.10.068

    Article  CAS  Google Scholar 

  24. Liu P, Wang Q, Li X (2009) Studies on CdSe/L-cysteine quantum dots synthesized in aqueous solution for biological labeling. J Phys Chem C 113(18):7670–7676. https://doi.org/10.1021/jp901292q

    Article  CAS  Google Scholar 

  25. Zhang L, Zeng Y, Liu S, Liang F (2018) Cucurbit [n] uril (n= 6, 7) based carbon-gold hybrids with peroxidase-like activity. Nanomaterials 8(5):273. https://doi.org/10.3390/nano8050273

    Article  CAS  PubMed Central  Google Scholar 

  26. Zeng Y, Miao F, Zhao Z, Zhu Y, Liu T, Chen R, Liu S, Lv Z, Liang F (2017) Low-cost nanocarbon-based peroxidases from graphite and carbon fibers. Appl Sci 7(9):924. https://doi.org/10.3390/app7090924

    Article  CAS  Google Scholar 

  27. Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, Huang Y (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47(23):6695–6697. https://doi.org/10.1039/C1CC11943E

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the National Nature Science Foundation of China (21472143), the Natural Science Foundation of Hubei Province (2017CFB680), the Open Fund of the State Key Laboratory of Refractories and Metallurgy (Wuhan University of Science and Technology) of China (G201703) and Key Laboratory of Measurement and Control System for Offshore Environment, Fuqing Branch of Fujian Normal University, Fujian Province University (S1-KF1604), Guiding Projects of Fujian Province (2018H0013), and Key Natural Fund Projects of Universities in Fujian Province (JZ160490).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Huang, K., Li, S. et al. One-Pot Hydrothermal Synthesis of Carbon Quantum Dots with Excellent Photoluminescent Properties and Catalytic Activity from Coke Powders. J Fluoresc 30, 151–156 (2020). https://doi.org/10.1007/s10895-019-02480-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02480-3

Keywords