Skip to main content

Advertisement

Log in

Organic Material Based Fluorescent Sensor for Hg2+: a Brief Review on Recent Development

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Due to the deleterious effects of mercury on human health and natural ecosystems, high reactivity, non-degradability, extreme volatility and relative water and tissue solubility, it would consider as one of the most toxic environmental pollutants among the transition metals. In the present investigation, we have tried to summarized the several organic material based fluorescent sensor including rhodamine, boron-dipyrromethene (BODIPYs), thiourea, crown-ether, coumarine, squaraines, pyrene, imidazole, triazole, anthracene, dansyl, naphthalenedimide/ naphthalene/ naphthalimide, naphthyridine, iridium (III) complexes, polymeric materials, cyclodextrin, phthalic anhydride, indole, calix [4]arene, chromenone, 1,8-naphthalimides, lysine, styrylindolium, phenothiazine, thiocarbonyl quinacridone, oxadiazole, triphenylamine–triazines, tetraphenylethene, peptidyl and semicarbazone for the trace mercury detection in the aqueous, aqueous–organic and cellular media. The present review provides a brief look over the previous development in the organic material based fluorescent sensor for mercuric ion detection. Furthermore, the ligand-metal binding stoichiometry, binding/association/dissociation constants and the detection limit by the receptors have been particularly highlighted which might be useful for the future design and development of more sensitive and robust fluorescent chemosensor/chemodosimeter for the mercuric ion detection.

Dummy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54

Similar content being viewed by others

References

  1. Zhang J, Zhu Z, Di J, Long Y, Li W, Tu Y (2015) A sensitive sensor for trace Hg2+ determination based on ultrathin g-C 3 N4 modified glassy carbon electrode. Electrochim Acta 186:192–200

    Article  CAS  Google Scholar 

  2. Zhan S, Xu H, Zhang D, Xia B, Zhan X, Wang L, Lv J, Zhou P (2015) FluorescentdetectionofHg2+ and Pb2+ using GeneFinder™ and an integratedfunctionalnucleicacid. Biosens Bioelectron 72:95–99

    Article  CAS  PubMed  Google Scholar 

  3. Xing H, Xu J, Zhu X, Duan X, Lu L, Wang W, Zhang Y, Yang Y (2016) Highly sensitive simultaneous determination of cadmium (II), lead (II), copper (II), and mercury (II) ions on N-doped graphene modified electrode. J Electroanal Chem 760:52–58

    Article  CAS  Google Scholar 

  4. Mei C, Lin D, Fan C, Liu A, Wang S, Wang J (2016) Highly sensitive and selective electrochemical detection of Hg2+ through surface-initiated enzym atic polymerization. Biosens Bioelectron 80:105–110

    Article  CAS  PubMed  Google Scholar 

  5. Lin SM, Geng S, Li N, Li NB, Luo HQ (2016) D-penicillamine-templated copper nanoparticles via ascorbic acid reduction as a mercury ion sensor. Talanta 151:106–113

    Article  CAS  PubMed  Google Scholar 

  6. Petzoldt M, Eschenbaum C, Schwaebel ST, Broedner K, Lemmer U, Hamburger M, Bunz UHF (2015) A biphasic mercury-ion sensor: exploiting microfluidics to make simple anilines competitive ligands. Chem Eur J 21:14297–14300

    Article  CAS  PubMed  Google Scholar 

  7. Wen G, Wen X, Choi MMF, Shuang S (2015) Photoelectrochemical sensor for detecting Hg2+ based on exciton trapping. Sensors Actuators B 221:1449–1454

    Article  CAS  Google Scholar 

  8. Li J, Lu L, Kang T, Cheng S (2016) Intense charge transfer surface based on graphene and thymine–Hg (II)–thymine base pairs for detection of Hg2+. Biosens Bioelectron 77:740–745

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Miao X, Xing K, Peng X, Zhu A, Ling L (2016) Ultrasensitive electrochemical sensor for Hg2+ by using hybridization chain reaction coupled with Ag @ Aucore–shell nanoparticles. Biosens Bioelectron 80:339–343

    Article  CAS  PubMed  Google Scholar 

  10. Khodaveisi J, Shabani AMH, Dadfarnia S, Moghadam MR, Hormozi-Nezhad MR (2016) Development of a novel method for determination of mercury based on its inhibitory effect on horseradish peroxidase activity followed by monitoring the surface plasmon resonance peak of gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 153:709–713

    Article  CAS  PubMed  Google Scholar 

  11. Jiqu H, Qixia Y (2015) A core–shell structured inorganic–organic hybrid nanocompositefor Hg(II) sensing and removal. Spectrochim Acta A Mol Biomol Spectrosc 149:487–493

    Article  PubMed  Google Scholar 

  12. Huang YL, Gao ZF, Jia J, Luo HQ, Li NB (2016) A label-free electrochemical sensor for detection of mercury(II) ionsbased on the direct growth of guanine nanowire. J Hazard Mater 308:173–178

    Article  CAS  PubMed  Google Scholar 

  13. Yi-WeiWang A, ShurongTang B, Huang-HaoYang CN, Hongbo S (2016) A novel colorimetric assay for rapid detection of cysteine and Hg2+ based on gold clusters. Talanta 146:71–74

    Article  Google Scholar 

  14. Zhang X, Huang XJ, Zhu ZJ (2013) A reversible Hg(II)-selective fluorescent chemosensorbased on a thioether linked bis-rhodamine. RSC Adv 3:24891–24895

    Article  CAS  Google Scholar 

  15. Kaewtong C, Niamsa N, Wanno B, Morakot N, Pulpoka B, Tuntulani T (2014) Optical chemosensors for Hg2+ from terthiophene appended rhodamine derivatives: FRET based molecular and in situ hybrid gold nanoparticle sensors. New J Chem 38:3831–3839

    Article  CAS  Google Scholar 

  16. Chen J, Li Y, Zhong W, Wang H, Zhang P, Jiang J (2016) A highly selective fluorescent and colorimetric chemosensor for Hg2+ based on a new rhodamine derivative. doi:10.1039/c5ay03281d

  17. Shen L, Wu Y, Ma W (2015) Rhodamine functionalized magnetic core–shell nanocomposite: an emission “off–on” sensing system for mercury ion detection and extraction. Spectrochim Acta A Mol Biomol Spectrosc 138:348–356

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Mu S (2014) Core–shell structured Fe3O4 nanoparticles functionalized with rhodamine derived probe for the detection, adsorption and removal of Hg(II): a sensing system with ‘warning’ signal. Sensors Actuators B 192:275–282

    Article  Google Scholar 

  19. So HS, Rao BA, Hwang J, Yesudas K, Son Y (2014) Synthesis of novel squaraine–bis(rhodamine-6G): A fluorescent chemosensor for the selective detection of Hg2+. Sensors Actuators B 202:779–787

    Article  CAS  Google Scholar 

  20. Luo J, Jiang S, Qin S, Wu H, Wang Y, Jiang J, Liu X (2011) Highly sensitive and selective turn-on fluorescent chemosensor for Hg2+ in pure water based on a rhodamine containing water-soluble copolymer. Sensors Actuators B 160:1191–1197

    Article  CAS  Google Scholar 

  21. Cruz-Guzman MD, Aguilar-Aguilar A, Hernandez-Adame L, Bañuelos-Frias A, Medellín-Rodríguez FJ, Palestino G (2014) A turn-on fluorescent solid-sensor for Hg(II) detection. Nanoscale Res Lett 9:431–440

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huang W, Wu D, Wu G, Wang Z (2012) Dual functional rhodamine-immobilized silica toward sensing and extracting mercury ions in natural water samples. Dalton Trans 41:2620–2625

    Article  CAS  PubMed  Google Scholar 

  23. Madhu S, Sharma DK, Basu SK, Jadhav S, Chowdhury A, Ravikanth M (2013) Sensing Hg(II) in vitro and in vivo using a benzimidazole substituted BODIPY. Inorg Chem 52:11136–11145

    Article  CAS  PubMed  Google Scholar 

  24. Zhao C, Li K, Xie N, Zhao M, Peng S (2014) Deprotonation and chelation synergically triggered near infrared fluorescence for selective detection of Hg(II. J Photochem Photobiol A Chem 290:72–76

    Article  CAS  Google Scholar 

  25. Zhang T, She G, Qi X, Mu L (2013) A BODIPY-based sensor for Hg2+ in living cells. Tetrahedron 69:7102–7106

    Article  CAS  Google Scholar 

  26. Cheng H, Qian Y (2015) Intramolecular fluorescence resonance energy transfer in a novel PDI–BODIPY dendritic structure: synthesis, Hg2+ sensor and livingcell imaging. Sensors Actuators B 219:57–64

    Article  CAS  Google Scholar 

  27. Canturk C, Uçuncu M, Emrullahoglu M (2015) A BODIPY-based fluorescent probe for the differential recognition of Hg(II) and Au(III) ions. RSC Adv 5:30522–30525

    Article  CAS  Google Scholar 

  28. Culzoni MJ, Peña AM, Machuca A, Goicoechea HC, Brasca R, Babiano R (2013) Photoinduced electron transfer fluorometric Hg(II) chemosensor based on a BODIPY armed with a tetrapod receptor. Talanta 117:288–296

    Article  CAS  PubMed  Google Scholar 

  29. Liu J, Yua M, Wang XC, Zhang Z (2012) A highly selective colorimetric sensor for Hg2+ based on nitrophenyl-aminothiourea. Spectrochim Acta A 93:245–249

    Article  CAS  Google Scholar 

  30. Vengaian KM, Britto CD, Sivaraman G, Sekar K, Singaravadivel S (2015) Phenothiazine based sensor for naked-eye detection and bioimaging of Hg(II) and F ions. RSC Adv 5:94903–94908

    Article  CAS  Google Scholar 

  31. Dai H, Liu F, Gao Q, Fu T, Kou X (2011) A highly selective fluorescent sensor for mercury ion (II) based on azathia-crown ether possessing a dansyl moiety. Luminescence 26:523–530

    Article  CAS  PubMed  Google Scholar 

  32. Yan Z, Hu L, Nie L, Lv H (2011) Preparation of 4,4-bis-(carboxyl phenylazo)-dibenzo-18-crown-6 dye and its application on ratiometric colorimetric recognition to Hg2+. Spectrochim Acta A 79:661–665

    Article  CAS  Google Scholar 

  33. El-Shekheby HA, Mangood AH, Hamza SM, Al-Kady AS, Ebeid EM (2014) A highly efficient and selective turn on fluorescent sensor for Hg2+, Ag+ and Ag nanoparticles based on a coumarin dithioate derivative. Luminescence 29:158–167

    Article  CAS  PubMed  Google Scholar 

  34. Gao B, Gong WT, Zhang QL, Ye JW, Ning GL (2012) A selective “turn-on” fluorescent sensor for Hg2+ based on “reactive” 7-hydroxycoumarin compound. Sensors Actuators B 162:391–395

    Article  CAS  Google Scholar 

  35. Fan J, Chen C, Lin Q, Fu N (2012) A fluorescent probe for the dual-channel detection of Hg2+/Ag+ and its Hg2+-based complex for detection of mercapto biomolecules with a tunable measuring range. Sensors Actuators B 173:874–881

    Article  CAS  Google Scholar 

  36. Chen C, Dong H, Chen Y, Guo L, Wang Z, Sun JJ, Fu N (2011) Dual-mode unsymmetrical squaraine-based sensor for selective detection of Hg2+ in aqueous media. Org Biomol Chem 9:8195–8201

    Article  CAS  PubMed  Google Scholar 

  37. Wang HF, SP W (2013) Highly selective fluorescent sensors for mercury(II) ions and their applications in living cell imaging. Tetrahedron 69:1965–1969

    Article  CAS  Google Scholar 

  38. Weng J, Mei Q, Ling Q, Fan Q, Huang W (2012) A new colorimetric and fluorescent ratiometric sensor for Hg2+ based on 4-pyren-1-yl-pyrimidine. Tetrahedron 68:3129–3134

    Article  CAS  Google Scholar 

  39. Yang MH, Thirupathi P, Lee KH (2011) Selective and sensitive ratiometric detection of Hg(II) ions using a simple amino acid based sensor. Org Lett 13:5028–5031

    Article  CAS  PubMed  Google Scholar 

  40. Choi YW, You GR, Lee MM, Kim J, Jung KD, Kim C (2014) Highly selective recognition of mercury ions through the “naked-eye. Inorg Chem Commun 46:43–46

    Article  CAS  Google Scholar 

  41. Liu J, Lin Q, Zhang YM, Wei TB (2014) A reversible and highly selective fluorescent probe for monitoring Hg2+ and iodide in aqueous solution. Sensors Actuators B 196:619–623

    Article  CAS  Google Scholar 

  42. Hemamalini A, Mudedl SK, Subramanian V, Das TM (2015) Design, synthesis and metal sensing studies of ether-linked bis-triazole derivatives. New J Chem 39:3777–3784

    Article  CAS  Google Scholar 

  43. Praveen L, Babu J, Reddy MLP, Varma RL (2012) Unfolding with mercury: anthracene-oxyquinoline dyad as a fluorescent indicator for Hg(II. Tetrahedron Lett 53:3951–3954

    Article  CAS  Google Scholar 

  44. Lohani CR, Neupane LN, Kim JM, Lee KH (2012) Selectively and sensitively monitoring Hg2+ in aqueous buffer solutions with fluorescent sensors based on unnatural amino acids. Sensors Actuators B 161:1088–1096

    Article  CAS  Google Scholar 

  45. Tharmaraj V, Pitchumani K (2012) An acyclic, dansyl based colorimetric and fluorescent chemosensor for Hg(II) via twisted intramolecular charge transfer (TICT. Anal Chim Acta 751:171–175

    Article  CAS  PubMed  Google Scholar 

  46. Li Q, Peng M, Li H, Zhong C, Zhang L, Cheng X, Peng X, Wang Q, Qin J, Li Z (2012) A new “turn-on” naphthalenedimide-based chemosensor for mercury ions with high selectivity: successful utilization of the mechanism of twisted intramolecular charge transfer, near-IR fluorescence, and cell images. Org Lett 14:2094–2097

    Article  CAS  PubMed  Google Scholar 

  47. Wei TB, Gao GY, WJ Q, Shi BB, Lin Q, Yao H, Zhang YM (2014) Selective fluorescent sensor for mercury(II) ion based on an easy toprepare double naphthalene Schiff base. Sensors Actuators B 199:142–147

    Article  CAS  Google Scholar 

  48. Li CY, Xu F, Li YF, Zhou K, Zhou Y (2012) A fluorescent chemosensor for Hg2+ based on naphthalimide derivative by fluorescence enhancement in aqueous solution. Anal Chim Acta 717:122–126

    Article  CAS  PubMed  Google Scholar 

  49. Mahapatra AK, Hazra G, Das NK, Sahoo P, Goswami S, Fun HK (2011) A highly sensitive and selective ratiometric fluorescent probe based on conjugated donor–acceptor–donor constitution of 1,8-naphthyridine for Hg2+. J Photochem Photobiol A Chem 222:47–51

    Article  CAS  Google Scholar 

  50. Yan F, Mei Q, Wang L, Tong B, Xu Z, Weng J, Wang L, Huang W (2012) A highly selective and ratiometric sensor for Hg2+ based on a phosphorescent iridium (III) complex. Inorg Chem Commun 22:178–181

    Article  CAS  Google Scholar 

  51. Wu Y, Jing H, Dong Z, Zhao Q, Wu H, Li F (2011) Ratiometric phosphorescence imaging of Hg(II) in living cells based on a neutral iridium(III) complex. Inorg Chem 50:7412–7420

    Article  CAS  PubMed  Google Scholar 

  52. Geng TM, DY W, Huang W, Huang RY, GH W (2014) Fluorogenic detection of Hg2+, Cd2+, Fe2+, Pb2+ cations in aqueous media by means of an acrylamide-acrylic acid copolymer chemosensor with pendant rhodamine-based dyes. J Polym Res 21:354–362

    Article  Google Scholar 

  53. Kanagaraj K, Bavanidevi K, Chow TJ, Pitchumani K (2014) Selective “turn-off” fluorescent sensing of mercury ions using aminocyclodextrin:3-hydroxy-Nphenyl-2-naphthamide complex in aqueous solution. RSC Adv 4:11714–11722

    Article  CAS  Google Scholar 

  54. Das P, Ghosh A, Bhatt H, Das A (2012) A highly selective and dual responsive test paper sensor of Hg2+/Cr3+ for naked eye detection in neutral water. RSC Adv 2:3714–3721

    Article  CAS  Google Scholar 

  55. HH W, Sun YL, Wan CF, Yang ST, Chen SJ, CH H, AT W (2012) Highly selective and sensitive fluorescent chemosensor for Hg2+ in aqueous solution. Tetrahedron Lett 53:1169–1172

    Article  Google Scholar 

  56. Dessingou J, Tabbasum K, Mitra A, Hinge VK, Rao CP (2012) Lower rim 1,3-di{4-antipyrine}amide conjugate of calix[4]arene: synthesis, characterization, and selective recognition of Hg2+ and its sensitivity toward pyrimidine bases. J Org Chem 77:1406–1413

    Article  CAS  PubMed  Google Scholar 

  57. Kim SB, Cho DG (2012) HgII-selective fluorescent indicator: one-step synthesis. Eur J Org Chem:2495–2498

  58. Yan Y, Zhang Y, Xu H (2013) A selective “turn-on” fluorescent probe for recognition of mercury(II) ions in aqueous solution based on a desulfurization reaction. ChemPlusChem:1–14. doi:10.1002/cplu.201300150

  59. Chen L, Yang L, Li H, Gao Y, Deng D, Wu Y, Ma LJ (2011) Tridentate lysine-based fluorescent sensor for Hg(II) in aqueous solution. Inorg Chem 50:10028–10032

    Article  CAS  PubMed  Google Scholar 

  60. Li Y, Wei F, Lu Y, He S, Zhao L, Zeng X (2013) Novel mercury sensor based on water soluble styrylindolium dye. Dyes Pigments 96:424–429

    Article  Google Scholar 

  61. Zhou C, Song Y, Li Y (2014) A novel highly sensitive and selective fluorescent sensor for imaging mercury(II) in living cells. RSC Adv 4:33614–33618

    Article  CAS  Google Scholar 

  62. Qu Y, Yang J, Hua J, Zou L (2012) Thiocarbonyl quinacridone-based “turn on” fluorescent chemodosimeters for highly sensitive and selective detection of Hg(II. Sensors Actuators B 161:661–668

    Article  CAS  Google Scholar 

  63. Choi J, Lee SK, Bae J, Chang SK (2014) Colorimetric signaling of Hg2+ ions by a nitrobenzoxadiazole-appended cyclen-triester. Tetrahedron Lett 55:5294–5297

    Article  CAS  Google Scholar 

  64. Shen Y, Zhang Y, Zhang X, Zhang C, Zhang L, Jin J, Li H, Yao S (2014) A new turn-on fluorescent sensor based on NBD for highly selective detection of Hg2+ in aqueous media and imaging in live cells. Anal Methods 6:4797–4802

    Article  CAS  Google Scholar 

  65. Zhang H, Qu Y, Gao Y, Hua J, Li J, Li B (2013) A red fluorescent ‘turn-on’ chemosensor for Hg2+ based on triphenylamine–triazines derivatives with aggregation-induced emission characteristics. Tetrahedron Lett 54:909–912

    Article  CAS  Google Scholar 

  66. Ozturk S, Atilgan S (2014) A tetraphenylethene based polarity dependent turn-on fluorescence strategy for selective and sensitive detection of Hg2+ in aqueous medium and in living cells. Tetrahedron Lett 55:70–73

    Article  CAS  Google Scholar 

  67. Thirupathi P, Lee KH (2013) A new peptidyl fluorescent chemosensors for the selective detection of mercury ions based on tetrapeptide. Bioorg Med Chem 21:7964–7970

    Article  CAS  PubMed  Google Scholar 

  68. WJ Q, Gao GY, Shi BB, Wei TB, Zhang YM, Lin Q, Yao H (2014) A highly selective and sensitive fluorescent chemosensor for mercuryions based on the mechanism of supramolecular self-assembly. Sensors Actuators B 204:368–374

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Saleem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, M., Rafiq, M. & Hanif, M. Organic Material Based Fluorescent Sensor for Hg2+: a Brief Review on Recent Development. J Fluoresc 27, 31–58 (2017). https://doi.org/10.1007/s10895-016-1933-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1933-x

Keywords

Navigation