Skip to main content
Log in

Fluorescence, Photophysical Behaviour and DFT Investigation of E,E-2,5-bis[2-(3-pyridyl)ethenyl]pyrazine (BPEP)

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

E,E-2,5-bis[2-(3-pyridyl)ethenyl]pyrazine (BPEP) has been prepared by aldol condensation between 2,5-dimethylpyrazine and pyridine-3-carboxaldehyde. It is characterized by IR, 1H NMR, and 13C NMR. The electronic absorption and emission properties of BPEP were studied in different solvents. BPEP displays a slight solvatochromic effect of the absorption and emission spectrum, indicating a small change in dipole moment of BPEP upon excitation. The dye solutions (1 × 10−4 M) in CHCl3, EtOH and dioxane give laser emission in blue region upon excitation by a 337.1 nm nitrogen pulse (λ = 337 nm). The tuning range, gain coefficient (α) and emission cross – section (σe) have been determined. Ground and excited states electronic geometric optimizations were performed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respectively. A DFT natural bond analysis complemented the ICT. The simulated maximum absorption and emission wavelengths are in line the observed ones in trend, and are proportionally red-shifted with the increase of the solvent polarity. The stability, hardness and electrophilicity of BPEP in different solvents were correlated with the polarity of the elected solvents. BPEP dye displays fluorescence quenching by colloidal silver nanoparticles (AgNPs). The fluorescence data reveal that radiative and non-radiative energy transfer play a major role in the fluorescence quenching mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. C. Grimsdale, K. L Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes, Chem. Rev 109 (2009) 897–1091.

  2. Braga D, Horowitz G (2009) Adv Mater 21:1473–1486

    Article  CAS  Google Scholar 

  3. Radford RJ, Chyan W, Lippard SJ (2013) Chem Sci 4:3080–3084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Facchetti A (2011) Chem Mater 23:733–758

    Article  CAS  Google Scholar 

  5. Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A (2010) Chem Rev 110:3–24

    Article  CAS  PubMed  Google Scholar 

  6. K.M. Rahulan, S. Balamurugan, K.S. Meena, G-Y. Yeap, C.C. Kanakam, Optics & Laser Technology 56 (2014) 142–145.

  7. Singh H, Sindhu J, Khurana JM (2014) Sensors Actuators B 192:536–542

    Article  CAS  Google Scholar 

  8. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Chem Rev 103:3899–4302

    Article  PubMed  Google Scholar 

  9. Pham THN, Clarke RJ (2008) J Phys Chem B 112:6513

    Article  CAS  PubMed  Google Scholar 

  10. Huang Y, Cheng T, Li F, Huang C, Hou T, Yu A, Zhao X, Xu X (2002) J Phys Chem B 106:10020

    Article  CAS  Google Scholar 

  11. Shaikh M, Mohanty J, Singh PK, Bhasikuttan AC, Rajule RN, Satam VS, Bendre SR, Kanetkar VR, Pal H (2010) J Phys Chem A 114:450

    Article  Google Scholar 

  12. Kim HN, Guo Z, Zhu W, Yoon J, Tian H (2011) Chem Soc Rev 40:79–93

    Article  CAS  PubMed  Google Scholar 

  13. He GS, Tan LS, Zheng Q, Prasad PN (2008) Chem Rev 108:1245–1330

    Article  CAS  PubMed  Google Scholar 

  14. Li Z, Qin Q (2011) J Polym Chem 2:2723–2740

    Article  CAS  Google Scholar 

  15. Castle RN (1962) Chemistry of heterocyclic compounds. John Wiley and Sons: New York 23

  16. Hong B, Kang KA (2006) Biosens Bioelectron 21:1333

    Article  CAS  PubMed  Google Scholar 

  17. Ng MY, Liu WC (2009) Opt Express 17:5867

    Article  CAS  PubMed  Google Scholar 

  18. Daniel MC, Astruc D (2004) Chem Rev 104:293

    Article  CAS  PubMed  Google Scholar 

  19. Deng W, Goldys EM (2012) Langmuir 28:10152

    Article  CAS  PubMed  Google Scholar 

  20. Fu Y, Zhang J, Lakowicz JR (2007) J Fluoresc 17:811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kalele S, Deshpande AC, Singh SB, Kulkarni SK (2008) Bull Mater Sci 31:541

    Article  CAS  Google Scholar 

  22. Basheer NS, Kumar BR, Kurian A, George SD (2013) J Lumin 137:225–229

    Article  Google Scholar 

  23. Pushpam S, Kottaisamy M, Ramakrishnan V (2013) Spectrochim Acta A Mol Biomol Spectrosc 114:272–276

    Article  CAS  PubMed  Google Scholar 

  24. Pannipara M, Asiri AM, Alamry KA, Arshad MN, El-daly SA (2014) J Fluoresc 24:1629–1638

    Article  CAS  PubMed  Google Scholar 

  25. Pannipara M, Asiri AM, Alamry KA, Arshad MN, El-Daly SA (2015) Spectrochim Acta A 136:1893–1902

    Article  CAS  Google Scholar 

  26. Pannipara M, Asiri AM, Alamry KM, Salam IA, El-Daly SA (2015) J Lumin 157:163–171

    Article  CAS  Google Scholar 

  27. Melhuish WH (1961) J Phys Chem 65:229–253

    Article  CAS  Google Scholar 

  28. Coe BJ, Harris JA, Asselberghs I, Clays K, Olbrechts G, Persoons A, Hupp JT, Johnson RC, Coles SJ, Hursthous MB, Nakatani K (2002) Adv Funct Mater 12:110–116

    Article  CAS  Google Scholar 

  29. Gordon P, Gregory P (1987) Organic chemistry in colour, Moskva, Chimia (in Russian)

  30. Pushpam S, Kottaisamy M, Ramakrishnan Spectrochimica V (2013) Acta Part A 114:272–276

    Article  CAS  Google Scholar 

  31. Lin-gun Liu, and W. A. Bassett, J. Appl. Phys., 44 (1973) 1475–1479.

  32. Valeur B (2001) Molecular fluorescence: Principles and applications. Weinheim, Wiley-VCH Verlag

    Book  Google Scholar 

  33. Rink M, Gusten H, Ache HJ (1986) Phys Chem 90:2661–2665

    Article  Google Scholar 

  34. Nair LG (1982) Prog Quant Electrochem 7:153

    Article  CAS  Google Scholar 

  35. Valverde-Aguilar G (2006) Opt Mater 28:1209–1215

    Article  CAS  Google Scholar 

  36. Birks JB (1970) Photophysics of aromatic molecules. Wiley Interscience, London, Wiley, p. 88

    Google Scholar 

  37. Birks JB (1973) Organic molecular Photophysics. John Wiley and Sons, New York

    Google Scholar 

  38. Strickler SJ, Berg RA (1962) J Chem Phys 37:814–822

    Article  CAS  Google Scholar 

  39. J. R. Lackowicz, Principle of Fluorescence Spectroscopy, Third Edition, 2006, Springer, New York Chapter 1, p. 10

  40. Padilha LA, Webster S, Przhonska OV, Hu H, Peceli D, Enstly TR, Bondar MV, Gerasov AO, Kovtun YP, Shandura MP, Kachlkovski AD, Hagan DJ, Van Stryland EW, Phys J (2010) Chem A 114:6493–6501

    CAS  Google Scholar 

  41. Kumar GA, Unnikrishnan NV (1997) Solid State Commun 29:1049

    Google Scholar 

  42. Kumar GA, Unnikrishnan NV (2001) J. Photochem & Photobiol. A:Chem 144:107–117

    CAS  Google Scholar 

  43. El-Daly SA, Rahman MM, Alamry KA, Asiri AM (2014) J Lumin 148:303–306

    Article  CAS  Google Scholar 

  44. El-Daly SA, Alamry KA, Asiri AM, Hussein MA (2012) J Lumin 132:2747–2752

    Article  CAS  Google Scholar 

  45. Förster T (1996) In: Sinanoglu O (ed) Modern quantum Chemistry. Academic Press, New York

    Google Scholar 

  46. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox (2009). Gaussian 09, Revision A.02. Gaussian, Inc. Wallingford.

  47. A. Frisch, R.D. Dennington II, T.A. Keith, J. Milliam. A. B. Nielsen, A. J. Holder, J. Hiscocks (2007). GaussView Reference, Version 5.0, Gaussian Inc. Pittsburgh.

  48. Yanai T, Tew DP, Handy NCA (2004) New hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) Chem. Phys Lett 393(1–3):51–57

    CAS  Google Scholar 

  49. Gross EKU, Kohn W (1990) Adv Quant Chem 21:255–291

    Article  CAS  Google Scholar 

  50. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  51. Reed EA, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  52. Wlodarczak G, Demaison J, Heineking N, Csaszar AG (1994) The Rotational Spectrum of propene: internal Rotation analysis and ab initio and experimental Centrifugal Distortion constants. J Mol Spectrosc 167:239–247

    Article  CAS  Google Scholar 

  53. Penn RE (1978) Microwave Spectrum of 2-Propene-l-imine, CH,=CHCH = NH. J Mol Spectrosc 69(2):373–382

    Article  CAS  Google Scholar 

  54. Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric Identification of organic compounds. John Willey, Chistester

    Google Scholar 

  55. Karabacak M, Cinar M (2012) Spectrochim Acta A 86:590–599

    Article  CAS  Google Scholar 

  56. Luque, F.J., Lopez J.M., Orozco, M., Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the provision of solvent effect”. Theor. Chem. Acc. (2000) 103:343–345.

  57. Chattaraj PK, Maiti B (2003) HSAB principle applied to the time evolution of chemical reactions. J Am Chem Soc 125:2705–2710

    Article  CAS  PubMed  Google Scholar 

  58. Pearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117:369–377

    Article  CAS  Google Scholar 

  59. Aurell MJ, Domingo LR, Perez P, Contreras R (2004) A theoretical study on the regioselectivity of 1,3-dipolar cycloadditions using DFT-based reactivity indexes. Tetrahedron 60:11503–11509

    Article  CAS  Google Scholar 

  60. Reed EA, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint Chem. Rev 88(6):899–926

    CAS  Google Scholar 

  61. Reed EA, Weinhold F (1983) Natural bond orbital analysis of near-Hartree-Fock water dimer. J Chem Phys 78(6):4066–4073

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdullah M. Asiri or Samy A. El-Daly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Soliemy, A.M., Osman, O.I., Hussein, M.A. et al. Fluorescence, Photophysical Behaviour and DFT Investigation of E,E-2,5-bis[2-(3-pyridyl)ethenyl]pyrazine (BPEP). J Fluoresc 26, 1199–1209 (2016). https://doi.org/10.1007/s10895-016-1802-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1802-7

Keywords

Navigation