Skip to main content
Log in

Monitoring the Competence of a New Keto-tetrahydrocarbazole Based Fluorosensor Under Homogeneous, Micro-Heterogeneous and Serum Albumin Environments

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We present here a detailed photophysical study of a recently synthesised fluorophore 8-methyl-8,9-dihydro-5H-[1,3]dioxolo[4,5-b]carbazol-6(7H)-one. This is a synthetic precursor of bio-active carbazole skeleton Clausenalene. Spectroscopic investigation of the fluorophore has been carried out in different protic and aprotic solvents, as well as in binary solvent mixtures, using absorption, steady-state and time-resolved fluorescence techniques. This fluorophore is particularly responsive to the hydrogen bonding nature as well as polarity of the solvent molecules. When considered in micelles and β-cyclodextrin, this behaves as a reporter of its immediate microenvironment. Steady state and time resolved fluorometric and circular dichroism techniques have been used to explore the binding interaction of the fluorophore with transport proteins, bovine serum albumin and human serum albumin. The probable binding sites of the fluorophore in the proteinous environments have been evaluated from fluorescence resonance energy transfer study. Laser flash photolysis experiments also have been performed to observe the triplet excited state interaction between the fluorophore and albumin proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  2. Zhang FF, Gan LL, Zhou GH (2010) Synthesis, antibacterial and antifungal activities of some carbazole derivatives. Bioorg Med Chem Lett 20:1881–1884

    Article  CAS  PubMed  Google Scholar 

  3. Caruso A, Lancelot JC, Kashef HE, Sinicropi MS, Legay R, Lesnard A, Rault S (2009) A rapid and versatile synthesis of novel pyrimido [5,4-b] carbazoles. Tetrahedron 65:10400–10405

    Article  CAS  Google Scholar 

  4. Rahman MM, Gray AI (2005) A benzoisofuranone derivative and carbazole alkaloids from Murrayakoenigii and their antimicrobial activity. Phytochemistry 66:1601–1606

    Article  CAS  PubMed  Google Scholar 

  5. Knölker HJ, Fröhner W (1999) Transition metal complexes in organic synthesis, part 54. Improved total syntheses of the antibiotic alkaloids carbazomycin A and B. Tet Lett 40:6915–6918

    Article  Google Scholar 

  6. Chakraborty S, Chattopadhyay G, Saha C (2011) Montmorillonite-KSF induced Fischer indole cyclization under microwave towards a facile entry to 1-keto-1,2,3,4-tetrahydrocarbazoles. Ind J Chem B 50:201–206

    Google Scholar 

  7. Bhattacharyya P, Biswas GK, Barua AK, Saha C, Roy IB, Chowdhury BK (1993) Clausenalene, a carbazole alkaloid from Clausena heptaphylla. Phytochemistry 33:248–250

    Article  CAS  Google Scholar 

  8. Sohrab MH, Mazid MA, Rahman E, Hasan CM, Rashid MA (2001) Antibacterial activity of Clausena heptaphylla. Fitoterapia 72:547–549

    Article  CAS  PubMed  Google Scholar 

  9. Mitra AK, Ghosh S, Chakraborty S, Sarangi MK, Saha C, Basu S (2012) Photophysical properties of an environment sensitive fluorophore 1-keto-6,7-dimethoxy-1,2,3,4-tetrahydrocarbazole and its excited state interaction with N, N-dimethylaniline: a spectroscopic investigation. J Photochem Photobiol A 240:66–74

    Article  CAS  Google Scholar 

  10. Mitra AK, Ghosh S, Chakraborty S, Basu S, Saha C (2013) Synthesis and spectroscopic exploration of carboxylic acid derivatives of 6-hydroxy-1-keto-1,2,3,4-tetrahydrocarbazole: Hydrogen bond sensitive fluorescent probes. J Lumin 143:693–703

    Article  Google Scholar 

  11. Ghosh S, Mitra AK, Saha C, Basu S (2013) Tuning the solution phase photophysics of two de novo designed hydrogen bond sensitive 9-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-one derivatives. J Fluoresc 23:1179–1195

    Article  CAS  PubMed  Google Scholar 

  12. Mitra AK, Ghosh S, Sarangi MK, Chakraborty S, Saha C, Basu S (2014) Photophysics of a solvent sensitive keto-tetrahydrocarbazole based fluorophore and its interaction with triethylamine: a spectroscopic inquest under surfactant and β-CD confinement. J Mol Str 1074:617–628

    Article  CAS  Google Scholar 

  13. Mitra AK, Ghosh S, Sarangi MK, Sau A, Saha C, Basu S (2014) Influence of microheterogeneity on the solution phase photophysics of a newly synthesised, environment sensitive fluorophore 2-((7,8-dimethyl-1-oxo-2,3,4,9-tetrahydro-1H-carbazol-6-yl)oxy)acetic acid and its tagged derivative. J Photochem Photobiol A 296:66–79

    Article  Google Scholar 

  14. Bag SS, Pradhan MK, Kundu R, Jana S (2013) Highly solvatochromic fluorescent naphthalimides: design, synthesis, photophysical properties and fluorescence switch-on sensing of ct-DNA. Bio Med Chem Lett 23:96–101

    Article  CAS  Google Scholar 

  15. Sarangi MK, Mitra AK, Sengupta C, Ghosh S, Chakraborty S, Saha C, Basu S (2012) Hydrogen bond sensitive probe 5-Methoxy-1-keto-1,2,3,4-tetrahydro carbazole in the microheterogeneity of binary mixtures and reverse micelles. J Phys Chem C 117:2166–2174

    Article  Google Scholar 

  16. Li J, He Q, Yan X (2011) Molecular assemblies of biomimetic systems. Wiley-VCH

  17. Lee YS (2008) Self-assembly and Nano-technology A force balance approach. John Wiley and Sons

  18. Mallick A, Mandal MC, Haldar B, Chakrabarty A, Das P, Chattopadhyay N (2006) Surfactant-induced modulation of fluorosensor activity: a simple way to maximize the sensor efficiency. J Am Chem Soc 128:3126–3127

    Article  CAS  PubMed  Google Scholar 

  19. Nandi N, Bhattacharyya K, Bagchi B (2000) Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. Chem Rev 100:2013–2046

    Article  CAS  PubMed  Google Scholar 

  20. Bagchi B (2005) Water Dynamics in the Hydration Layer around proteins and micelles. Chem Rev 105:3197–3219

    Article  CAS  PubMed  Google Scholar 

  21. Bhattacharyya K (2003) Solvation dynamics and proton transfer in supramolecular assemblies. Acc Chem Res 36:95–101

    Article  CAS  PubMed  Google Scholar 

  22. Kalyansundaram K (1987) Photochemistry in microhetrogenoussystems, Academic, orlando

  23. Bales BL, Messina L, Vidal A, Peric M, Nasciment OR (1998) Precision relative aggregation number determinations of SDS micelles using a spin probe. A Model of Micelle Surface Hydration. J Phys Chem B 102:10347–10358

    Article  CAS  Google Scholar 

  24. Chakrabarty D, Hazra P, Sarkar N (2003) Solvation dynamics of coumarin 480 in TritonX-100 (TX-100) and bile salt mixed micelles. J Phys Chem A 107:5887–5893

    Article  CAS  Google Scholar 

  25. Bender ML, Komiyana M (1977) Cyclodextrin Chemistry. Springer, New York

    Google Scholar 

  26. Dodziuk H (2006) Cyclodextrins and their complexes, chemistry, analytical methods, applications. Willey, VCH, New York

    Book  Google Scholar 

  27. Li S, Purdy WC (1992) Cyclodextrins and their applications in analytical chemistry. Chem Rev 92:1457–1470

    Article  CAS  Google Scholar 

  28. Mueller A, O’Brien DF (2002) Supramolecular materials via polymerization of mesophases of hydrated amphiphiles. Chem Rev 102:727–758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kumar CV, Buranaprapuk A, Moyer GJ, Jockush S, Turro NJ (1998) Photochemical protease: site-specific photocleavage of hen egg lysozyme and bovine serum albumin. Proc Natl Acad Sci U S A 95:10361–10366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kumar CV, Buranaprapuk A (1997) Site-specific photocleavage of proteins. Angew Chem Int Ed Engl 36:2085–2087

    Article  CAS  Google Scholar 

  31. Hu Y-J, Liu Y, Xiao X-H (2009) Investigation of the interaction between berberine and human serum albumin. Biomacromolecules 10:517–521

    Article  CAS  PubMed  Google Scholar 

  32. Lhiaubet-Vallet V, Sarabia Z, Bosca F, Miranda MA (2004) Human serum albumin-mediated stereodifferentiation in the triplet state behavior of (S)- and (R)-Carprofen. J Am Chem Soc 126:9538–9539

    Article  CAS  PubMed  Google Scholar 

  33. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  CAS  PubMed  Google Scholar 

  34. Jimenez MC, Miranda MA, Vaya I (2005) Triplet excited states as chiral reporters for the binding of drugs to transport proteins. J Am Chem Soc 127:10134–10135

    Article  CAS  PubMed  Google Scholar 

  35. Szacilowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G (2005) Bioinorganic photochemistry: frontiers and mechanisms. Chem Rev 105:2647–2694

    Article  CAS  PubMed  Google Scholar 

  36. Pandey RK, Constantine S, Tsuchida T, Zheng G, Medforth CJ, Aoudia M, Kozyrev AN, Rogers MAJ, Kato H, Smith KM, Dougherty TJ (1997) Synthesis, photophysical properties, in vivo photosensitizing efficacy, and human serum albumin binding properties of some novel bacteriochlorins. J Med Chem 40:2770–2779

    Article  CAS  PubMed  Google Scholar 

  37. Patrice T (2004) Photodynamic therapy, royal society of chemistry (GB)

  38. Peters T (1985) Serum albumin, advances in protein chemistry, vol 37. Academic, New York

    Google Scholar 

  39. Zhao GJ, Han KL (2008) Effects of hydrogen bonding on tuning photochemistry: concerted hydrogen-bond strengthening and weakening. Chem Phys Chem 9:1842–1846

    CAS  PubMed  Google Scholar 

  40. Zhao GJ, Han KL (2007) Early time hydrogen-bonding dynamics of photoexcited coumarin 102 in hydrogen-donating solvents: theoretical study. J Phys Chem A 111:2469–2474

    Article  CAS  PubMed  Google Scholar 

  41. Lippert E (1957) Spektroskopische Bestimmung des Dipolmomentesaromatischer Verbindungenimerstenangeregten Singulettzustand. Berichte der Bunsengesellschaftfürphysikalische Chemie 61:962–975

    CAS  Google Scholar 

  42. Mataga N, Kaifu Y, Koizumi M (1956) Solvent effects upon fluorescence spectra and the dipolemoments of excited molecules. Bull Chem Soc Jpn 29:465–470

    Article  CAS  Google Scholar 

  43. Kamlet MJ, Abboud JL, Taft RW (1977) The solvatochromic comparison method. 6. The.pi.* scale of solvent polarities. J Am Chem Soc 99:6027–6038

    Article  CAS  Google Scholar 

  44. Catalan J (2009) Toward a generalized treatment of the solvent effect based on four empirical scales: Dipolarity (SdP, a New Scale), Polarizability (SP), Acidity (SA), and Basicity (SB) of the medium. J Phys Chem B 113:5951–5960

    Article  CAS  PubMed  Google Scholar 

  45. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry. Wiley VCH, Germany

    Google Scholar 

  46. Critchfield FE, Gibson JA, Hall JL (1953) Dielectric constant for the dioxane—water system from 20 to 350. J Am Chem Soc 75:1991–1992

    Article  CAS  Google Scholar 

  47. Geddes JA (1933) The fluidity of dioxane – water mixtures1. J Am Chem Soc 55:4832–4837

    Article  CAS  Google Scholar 

  48. Stallard RD, Amis ES (1952) Heat of vaporization and other properties of dioxane, waterand their mixtures. J Am Chem Soc 74:1781–1790

    Article  CAS  Google Scholar 

  49. Mallick A, Haldar B, Maiti S, Chattopadhyay N (2004) Constrained photophysics of 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine in micellar environments: a spectrofluorometric study. J Colloid Interface Sci 278:215–223

    Article  CAS  PubMed  Google Scholar 

  50. Rammurthy V (1991) Photochemistry in organised and constrained media, VCH, New York

  51. Almgren M, Grieser F, Thomas JK (1979) Dynamic and static aspects of solubilization of neutral arenes in ionic micellar solutions. J Am Chem Soc 101:279–291

    Article  CAS  Google Scholar 

  52. Saroja G, Ramachandram B, Saha S, Samanta A (1999) The fluorescence response of a structurally modified 4-Aminophthalimide derivative covalently attached to a fatty acid in homogeneous and micellar environments. J Phys Chem B 103:2906–2911

    Article  CAS  Google Scholar 

  53. Das P, Mallick A, Haldar B, Chakrabarty A, Chattopadhyay N (2006) Effect of nanocavity confinement on the rotational relaxation dynamics: 3-acetyl-4-oxo-6, 7-dihydro-12H indolo-[2, 3-a] quinolizine in micelles. J Chem Phys 125:044516(1)–044516(6)

    Google Scholar 

  54. Benesi HA, Hilderbrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  55. Chakrabarty A, Mallick A, Haldar B, Das P, Chattopadhyay N (2007) Binding interaction of a biological photosensitizer with serum albumins: a biophysical study. Biomacromolecules 8:920–927

    Article  CAS  PubMed  Google Scholar 

  56. Lapange S (1978) Physicochemical aspects of protein denaturation. Wiley, New York

    Google Scholar 

  57. Liepinsh E, Otting G (1994) Specificity of urea binding to proteins. J Am Chem Soc 116:9670–9674

    Article  CAS  Google Scholar 

  58. Nandi PK, Robinson DR (1984) Effects of urea and guanidine hydrochloride on peptide and nonpolar groups. Biochemistry 23:6661–6668

    Article  CAS  PubMed  Google Scholar 

  59. Stern O, Volmer M (1919) Über die Abklingungszeit der Fluoreszenz. Physikalische Zeitschrif 20:183–188

    CAS  Google Scholar 

  60. Chen YH, Yang JT, Martinez HM (1972) Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11:4120–4131

    Article  CAS  PubMed  Google Scholar 

  61. Ahmad B, Parveen S, Khan RH (2006) Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: a novel approach directly assigning binding site. Biomacromolecules 7:1350–1356

    Article  CAS  PubMed  Google Scholar 

  62. Sengupta B, Sengupta PK (2003) Binding of quercetin with human serum albumin: a critical spectroscopic study. Biopolymers 72:427–434

    Article  CAS  PubMed  Google Scholar 

  63. Banerjee T, Singh SK, Kishore N (2006) Binding of naproxen and amitriptyline to bovine serum albumin: biophysical aspects. J Phys Chem B 110:24147–24156

    Article  CAS  PubMed  Google Scholar 

  64. Lloyd JBF (1971) Synchronized excitation of fluorescence emission spectra. Nature Phys Sci 231:64–65

    Article  CAS  Google Scholar 

  65. Vo-Dinh T (1978) Multicomponent analysis by synchronous luminescence spectrometry. Anal Chem 50:396–401

    Article  Google Scholar 

  66. Vo-Dinh T (1982) Synchronous luminescence spectroscopy: methodology and applicability. Appl Spectroscopy 36:576–581

    Article  Google Scholar 

  67. Rubio S, Gomez-Hens A, Valcarcel M (1986) Analytical applications of synchronous fluorescence spectroscopy. Talanta 33:633–640

    Article  CAS  PubMed  Google Scholar 

  68. Patra D, Mishra AK (2002) Recent developments in multi-component synchronous fluorescence scan analysis. Trends Anal Chem 21:787–798

    Article  CAS  Google Scholar 

  69. Miller JN (1979) Recent advances in molecular luminescence analysis. Proc Anal Div Chem Soc 16:203–208

    CAS  Google Scholar 

  70. Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75

    Article  Google Scholar 

  71. Förster T (1959) 10th spiers memorial lecture. Transfer mechanisms of electronic excitation. Faraday Soc 27:7–17

    Article  Google Scholar 

  72. Sengupta B, Sengupta PK (2002) The interaction of quercetin with human serum albumin: a fluorescence spectroscopic study. Biochim Biophys Res Commun 299:400–403

    Article  CAS  Google Scholar 

  73. Valeur B (2002) Molecular fluorescence principles and applications, WILEY-VCH

  74. Rohatgi-Mukherjee KK (2014) Fundamentals of photochemistry, 4th ed.; New Age International

  75. Turro NJ (1991) Modern molecular photochemistry; University Science Books

  76. Banerjee M, Maiti S, Kundu I, Chakrabarty A, Basu S (2010) Simultaneous occurrence of energy transfer and photoinduced electron transfer in interactions of hen egg white lysozyme with 4-Nitroquinoline-1-Oxide. Photochem Photobiol 86:1237–1246

    Article  CAS  PubMed  Google Scholar 

  77. Wang JT, Sun Q, Zhang LM, Yu SQ (2010) Solvent effects of photoinduced electron transfer reactions of triplet fluorenone with amines. Chin Sci Bull 55:2891–2895

    Article  CAS  Google Scholar 

  78. Pan Y, Fu Y, Liu S, Yu H, Gao Y, GuoQ YS (2006) Studies on photoinduced H-Atom and electron transfer reactions of o-Naphthoquinones by laser flash photolysis. J Phys Chem A 110:7316–7322

    Article  CAS  PubMed  Google Scholar 

  79. Shida T, Nosaka Y, Kato T (1978) Electronic absorption spectra of some cation radicals as compared with ultraviolet photoelectron spectra. J Phys Chem 82:695–698

    Article  CAS  Google Scholar 

  80. Bixon M, Jortner (1993) Solvent relaxation dynamics and electron transfer. J Chem Phys 176:467–481

    CAS  Google Scholar 

  81. Barbara PF, Meyer TJ, Ratner MA (1996) Contemporary issues in electron transfer research. J Phys Chem 100:13148–13168

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by Chemical and Biophysical Approaches for Understanding of Natural Processes (CBAUNP) project, SINP of the Department of Atomic Energy (DAE), Government of India. Thanks to CSIR, New Delhi for providing financial helps in the form of fellowships. We are thankful to Mrs. Sayantani Mitra for her sincere support in perusing the paper and making suitable modifications in language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samita Basu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Physical properties and empirical parameters of solvents (S1), Theoretical details of Lippert-Mataga equation (S2), Kamlet-Taft Solvatochromic Comparison Method (S3), Catalan method (S4), Absorption spectra of MTDCO in dioxane-water binary mixture (S5), Lifetime of MTDCO in dioxane-water binary mixture (S6), Fluorescence decay parameters of MTDCO with increasing concentration of SDS, CTAB,TX-100 and β-CD (S7), Determination of binding constant values using the methods described by Almgren et al. (S8), Modified version of Benesi–Hildebrand equation to assess the binding constant for inclusion complex formation between MTDCO and β-CD (S9), Effect of denaturant (S10). (DOCX 311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, A.K., Sau, A., Bera, S.C. et al. Monitoring the Competence of a New Keto-tetrahydrocarbazole Based Fluorosensor Under Homogeneous, Micro-Heterogeneous and Serum Albumin Environments. J Fluoresc 25, 1931–1949 (2015). https://doi.org/10.1007/s10895-015-1685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1685-z

Keywords

Navigation