Skip to main content

Advertisement

Log in

A Highly Selective Turn-on Fluorescent Chemodosimeter for Cu2+ Through a Cu2+-Promoted Redox Reaction

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A highly sensitive and selective photoinduced electron transfer (PET) fluorescence chemodosimeter L for Cu2+ detection has been synthesized and characterized. This PET chemosensor composed of a butano-tethered electron-riched phenothiazine (Ptz) donor and acridine orange (AO) signalling element. Based on the Cu2+-promoted oxidation of Ptz donor, the signalling element AO showed a unique fluorescent turn-on properties, which led to a highly Cu2+-specific fluorescent chemodosimeter. A fluorescent enhancement factor over 8-fold can be reached by fully blocking the PET channel with a detection limit down to the 10−7 M range. Meanwhile, the reversibility of the chemodosimeter L can be realized by the addition of L-cysteine.

Based on the Cu2+-promoted oxidation of the electron-donating phenothiazine (Ptz) moiety, the property of fluorescent signal recovery of the acridine orange (AO) fluorophore has been developed as a highly selective turn-on fluorescent chemodosimeter for Cu (II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Krämer R (1998) Fluorescent chemosensors for Cu2+ ions: fast, selective, and highly sensitive. Angew Chem Int Ed 37:772–773

    Article  Google Scholar 

  2. Li X, Gao X, Shi W, Ma H (2014) Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev 114:590–659

    Article  CAS  PubMed  Google Scholar 

  3. De Silva AP, Gunaratne HN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  4. Chang J, Lu Y, He S, Liu C, Zhao LC, Zeng XS (2013) Efficient fluorescent chemosensor for HSO4 based on a strategy of anion-induced rotation-displaced H-aggregate. Chem Commun 49:6259–6261

    Article  CAS  Google Scholar 

  5. Da Silva JJRF, Williams RJP (2001) The biological chemistry of the elements: the inorganic chemistry of life [M]. Oxford University Press

  6. Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J (1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 3:7–13

    Article  CAS  PubMed  Google Scholar 

  7. Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749

    Article  CAS  PubMed  Google Scholar 

  8. Valentine JS, Hart PJ (2003) Misfolded CuZnSOD and amyotrophic lateral sclerosis. PNAS 100:3617–3622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  CAS  PubMed  Google Scholar 

  10. Brown DR, Kozlowski H (2004) Biological inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases. Dalton Trans 1907–1917

  11. Deraeve C, Boldron C, Maraval A, Mazarguil H, Gornitzka H, Vendier L, Pitie M, Meunier B (2008) Preparation and study of new poly-8-hydroxyquinoline chelators for an anti-Alzheimer strategy. Chem Eur J 14:682–696

    Article  CAS  PubMed  Google Scholar 

  12. Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67:952S–959S

    CAS  PubMed  Google Scholar 

  13. Torrado A, Walkup GK, Imperiali B (1998) Exploiting polypeptide motifs for the design of selective Cu (II) ion chemosensors. J Am Chem Soc 120:609–610

    Article  CAS  Google Scholar 

  14. Zheng Y, Gattás-Asfura KM, Konka V, Leblanc RM (2002) A dansylated peptide for the selective detection of copper ions. Chem Commun:2350–2351

  15. Zheng Y, Orbulescu J, Ji X, Andreopoulos FM, Pham SM, Leblanc RM (2003) Development of fluorescent film sensors for the detection of divalent copper. J Am Chem Soc 125:2680–2686

    Article  CAS  PubMed  Google Scholar 

  16. Gattás-Asfura KM, Leblanc RM (2003) Peptide-coated CdS quantum dots for the optical detection of copper (II) and silver (I). Chem Commun: 2684–2685

  17. Royzen M, Dai Z, Canary JW (2005) Ratiometric displacement approach to Cu (II) sensing by fluorescence. J Am Chem Soc 127:1612–1613

    Article  CAS  PubMed  Google Scholar 

  18. Gunnlaugsson T, Leonard JP, Murray NS (2004) Highly selective colorimetric naked-eye Cu (II) detection using an azobenzene chemosensor. Org Lett 6:1557–1560

    Article  CAS  PubMed  Google Scholar 

  19. Rurack K, Kollmannsberger M, Resch-Genger U, Daub J (2000) A selective and sensitive fluoroionophore for Hg (II), Ag (I), and Cu (II) with virtually decoupled fluorophore and receptor units. J Am Chem Soc 122:968–969

    Article  CAS  Google Scholar 

  20. Irving HM, Williams RJP (1953) The stability of transition-metal complexes. J Chem Soc: 3192–3210

  21. Khan M, Bouet G, Vierling F, Meullemeestre J, Schwing MJ (1996) Formation of cobalt (II), nickel (II) and copper (II) chloro complexes in alcohols and the Irving-Williams order of stabilities. Trans Metal Chem 21:231–234

    Article  CAS  Google Scholar 

  22. Grandini P, Mancin F, Tecilla P, Scrimin P, Tonellato U (1999) Exploiting the self-assembly strategy for the design of selective Cu (II) ion chemosensors. Angew Chem Int Ed 38:3061–3064

    Article  CAS  Google Scholar 

  23. Shnek DR, Pack DW, Arnold FH, Sasaki DY (1995) Metal-induced dispersion of lipid aggregates: a simple, selective, and sensitive fluorescent metal ion sensor. Angew Chem Int Ed Engl 34:905–907

    Article  Google Scholar 

  24. Bodenant B, Weil T, Businelli-Pourcel M, Fages F, Barbe B, Pianet I, Laguerre M (1999) Synthesis and solution structure analysis of a bispyrenyl bishydroxamate calix [4] arene-based receptor, a fluorescent chemosensor for Cu2+ and Ni2+ metal ions. J Org Chem 64:7034–7039

    Article  CAS  Google Scholar 

  25. Klein G, Kaufmann D, Schürch S, Reymond JL (2001) A fluorescent metal sensor based on macrocyclic chelation Electronic supplementary information (ESI) available: electrospray MS data and photographs of solutions of ligand 3c in the absence and presence of Cu2+. Chem Commun:561–562

  26. Zheng Y, Cao X, Orbulescu J, Konka V, Andreopoulos FM, Pham SM, Leblanc RM (2003) Peptidyl fluorescent chemosensors for the detection of divalent copper. Anal Chem 75:1706–1712

    Article  CAS  PubMed  Google Scholar 

  27. Comba P, Krämer R, Mokhir A, Naing K, Schatz E (2006) Synthesis of new phenanthroline-based heteroditopic ligands-highly efficient and selective fluorescence sensors for copper (II) ions. Eur J Inorg Chem: 4442–4448

  28. White BR, Holcombe JA (2007) Fluorescent peptide sensor for the selective detection of Cu2+. Talanta 71:2015–2020

    Article  CAS  PubMed  Google Scholar 

  29. Mahapatra AK, Hazra G, Das NK, Goswami S (2011) A highly selective triphenylamine-based indolylmethane derivatives as colorimetric and turn-off fluorimetric sensor toward Cu2+ detection by deprotonation of secondary amines. Sen Actuators B Chem 156:456–462

    Article  CAS  Google Scholar 

  30. Mashraqui SH, Chandiramani M, Betkar R, Ghorpade S (2010) An easily accessible internal charge transfer chemosensor exhibiting dual colorimetric and luminescence switch on responses for targeting Cu2+. Sen Actuators B Chem 150:574–578

  31. Lee A, Chin J, Park OK, Chung H, Kim JW, Yoon SY, Park K (2013) A novel near-infrared fluorescence chemosensor for copper ion detection using click ligation and energy transfer. Chem Commun 49:5969–5971

    Article  CAS  Google Scholar 

  32. Lee YH, Park N, Park YB, Hwang YJ, Kang C, Kim JS (2014) Organelle-selective fluorescent Cu2+ ion probes: revealing the endoplasmic reticulum as a reservoir for Cu-overloading. Chem Commun 50:3197–3200

    Article  CAS  Google Scholar 

  33. Zhao Y, Zhang XB, Han ZX, Qiao L, Li CY, Jian LX, Shen JL, Yu RQ (2009) Highly sensitive and selective colorimetric and Off-On fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Anal Chem 81:7022–7030

    Article  CAS  PubMed  Google Scholar 

  34. Kumar M, Kumar N, Bhalla V, Sharma PR, Kaur T (2011) Highly selective fluorescence turn-on chemodosimeter based on rhodamine for nanomolar detection of copper ions. Org Lett 14:406–409

    Article  PubMed  Google Scholar 

  35. Huang J, Xu Y, Qian X (2009) A colorimetric sensor for Cu2+ in aqueous solution based on metal ion-induced deprotonation: deprotonation/protonation mediated by Cu2+-ligand interactions. Dalton Trans:1761–1766

  36. He Q, Miller EW, Wong AP, Chang CJ (2006) A selective fluorescent sensor for detecting lead in living cell. J Am Chem Soc 128:9316–9317

    Article  CAS  PubMed  Google Scholar 

  37. Martínez R, Zapata F, Caballero A, Espinosa A, Tárraga A, Molina P (2006) 2-Aza-1,3-butadiene derivatives featuring an anthracene or pyrene unit: highly selective colorimetric and fluorescent signaling of Cu2+ cation. Org Lett 8:3235–3238

    Article  PubMed  Google Scholar 

  38. Kim SH, Kim JS, Park SM, Chang SK (2006) Hg2+-selective OFF-ON and Cu2+-selective ON-OFF type fluoroionophore based upon cyclam. Org Lett 8:371–374

    Article  CAS  PubMed  Google Scholar 

  39. Xu Z, Xiao Y, Qian X, Cui J, Cui D (2005) Ratiometric and selective fluorescent sensor for Cu (II) based on internal charge transfer (ICT). Org Lett 7:889–892

    Article  CAS  PubMed  Google Scholar 

  40. Kaur S, Kumar S (2002) Photoactive chemosensors 3: a unique case of fluorescence enhancement with Cu (II). Chem Commun: 2840–2841

  41. Ghosh P, Bharadwaj PK, Mandal S, Ghosh S (1996) Ni (II), Cu (II), and Zn (II) cryptate-enhanced fluorescence of a trianthrylcryptand: a potential molecular photonic OR operator. J Am Chem Soc 118:1553–1554

    Article  CAS  Google Scholar 

  42. Dujols V, Ford F, Czarnik AW (1997) A long-wavelength fluorescent chemodosimeter selective for Cu (II) ion in water. J Am Chem Soc 119:7386–7387

    Article  CAS  Google Scholar 

  43. Ramachandram B, Samanta A (1998) Transition metal ion induced fluorescence enhancement of 4-(N, N-dimethylethylenediamino)-7-nitrobenz-2-oxa-1,3-diazole. J Phys Chem A 102:10579–10587

    Article  CAS  Google Scholar 

  44. Wu Q, Anslyn EV (2004) Catalytic signal amplification using a heck reaction. An example in the fluorescence sensing of Cu (II). J Am Chem Soc 126:14682–14683

    Article  CAS  PubMed  Google Scholar 

  45. Mokhir A, Kiel A, Herten DP, Kraemer R (2005) Fluorescent sensor for Cu2+ with a tunable emission wavelength. Inorg Chem 44:5661–5666

    Article  CAS  PubMed  Google Scholar 

  46. He X, Liu H, Li Y, Wang S, Li Y, Wang N, XiaoJ XX, Zhu D (2005) Gold nanoparticle-based fluorometric and colorimetric sensing of copper (II) ions. Adv Mater 17:2811–2815

    Article  CAS  Google Scholar 

  47. Yang H, Liu ZQ, Zhou ZG, Shi EX, Li FY, Du YK, Yi T, Huang CH (2006) Highly selective ratiometric fluorescent sensor for Cu (II) with two urea groups. Tetrahedron Lett 47:2911–2914

    Article  CAS  Google Scholar 

  48. Li KB, Wei XL, Zang Y, He XP, Chen GR, Li J, Chen K (2013) Revisit of a dipropargyl rhodamine probe reveals its alternative ion sensitivity in both a solution and live cells. Analyst 138:7087–7089

    Article  CAS  PubMed  Google Scholar 

  49. Keene FR (1999) Metal-ion promotion of the oxidative dehydrogenation of coordinated amines and alcohols. Coord Chem Rev 187:121–149

    Article  CAS  Google Scholar 

  50. Chaudhry AF, Mandal S, Hardcastle KI, Fahrni CJ (2011) High-contrast Cu (I)-selective fluorescent probes based on synergistic electronic and conformational switching. Chem Sci 2:1016–1024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Quang DT, Kim JS (2010) Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and bio specimens. Chem Rev 110:6280–6301

    Article  CAS  Google Scholar 

  52. Yang Y, Zhao Q, Feng W, Li F (2013) Luminescent chemodosimeters for bio imaging. Chem Rev 113:192–270

    Article  CAS  PubMed  Google Scholar 

  53. Ajayakumar G, Sreenath K, Gopidas KR (2009) Phenothiazine attached Ru (bpy)3 2+ derivative as highly selective “turn-ON” luminescence chemodosimeter for Cu2+. Dalton Trans:1180–1186

  54. Ye Z, Song B, Yin Y, Zhang R, Yuan J (2013) Development of singlet oxygen-responsive phosphorescent ruthenium (II) complexes. Dalton Trans 42:14380–14383

    Article  CAS  PubMed  Google Scholar 

  55. Agiamarnioti K, Triantis T, Papadopoulos K, Dimotikali D (2004) Synthesis and chemiluminescent properties of novel biotinylated acridinium esters. Acta Chim Slov 51:67–76

    CAS  Google Scholar 

  56. Ferguson J, Mau AWH (1973) Spontaneous and stimulated emission from dyes-spectroscopy of neutral molecules of acridine-orange, proflavine, and rhodamine-B. Aust J Chem 26:1617–1624

    Article  CAS  Google Scholar 

  57. Zhou Y, Kim YS, Shi J, Jacobson O, Chen XY, Liu S (2011) Evaluation of 64Cu-labeled acridinium cation: a PET radiotracer targeting tumor mitochondria. Bioconjugate Chem 22:700–708

    Article  CAS  Google Scholar 

  58. Lerman LS (1961) Structural considerations in the interaction of DNA and acridines. J Mol Biol 3:18–IN14

    Article  CAS  PubMed  Google Scholar 

  59. Falcone RD, Correa NM, Biasutti MA, Silber JJ (2006) The use of acridine orange base (AOB) as molecular probe to characterize nonaqueous AOT reverse micelles. J Colloid Interf Sci 296:356–364

    Article  CAS  Google Scholar 

  60. Nafisi S, Saboury AA, Keramat N, Neault JF, Tajmir-Riahi HA (2007) Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue. J Mol Struct 827:35–43

    Article  CAS  Google Scholar 

  61. Pastré D, Piétrement O, Zozime A, Le Cam E (2005) Study of the DNA/ethidium bromide interactions on mica surface by atomic force microscope: influence of the surface friction. Biopolymers 77:53–62

    Article  PubMed  Google Scholar 

  62. MoradpourHafshejani S, Hedley JH, Haigh AO, Pike AR, Tuite EM (2013) Synthesis and binding of proflavine diazides as functional intercalators for directed assembly on DNA. RSC Adv 3:18164–18172

    Article  CAS  Google Scholar 

  63. Jenekhe SA, Lu L, Alam MM (2001) New conjugated polymers with donor-acceptor architectures: Synthesis and photophysics of carbazole-quinoline and phenothiazine-quinoline copolymers and oligomers exhibiting large intramolecular charge transfer. Macromolecules 34:7315–7324

    Article  CAS  Google Scholar 

  64. Li H, Kim FS, Ren G, Jenekhe SA (2013) High-mobility n-type conjugated polymers based on electron-deficient tetraazabenzodifluoranthene diimide for organic electronics. J Am Chem Soc 135:14920–14923

    Article  CAS  PubMed  Google Scholar 

  65. Du P, Lippard SJ (2010) A highly selective turn-on colorimetric, red fluorescent sensor for detecting mobile zinc in living cells. Inorg Chem 49:10753–10755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Cai ST, Lu Y, He S, Wei F, Zhao LC, Zeng XS (2013) A highly sensitive and selective turn-on fluorescent chemosensor for palladium based on a phosphine-rhodamine conjugate. Chem Commun 49:822–824

    Article  CAS  Google Scholar 

  67. Shortreed M, Kopelman R, Kuhn M, Hoyland B (1996) Fluorescent fiber-optic calcium sensor for physiological measurements. Anal Chem 68:1414–1418

    Article  CAS  PubMed  Google Scholar 

  68. Garrett CE, Prasad K (2004) The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions. Adv Syn & Cat 346:889–900

    Article  CAS  Google Scholar 

  69. Pharmacopoeia of People’s Republic of China. 2010, page 52, 59, 68

  70. Jacob C, Giles GI, Giles NM, Sies H (2003) Sulfur and selenium: the role of oxidation state in protein structure and function. Angew Chem Int Ed 42:4742–4758

    Article  CAS  Google Scholar 

  71. Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC (2013) Aerobic copper-catalyzed organic reactions. Chem Rev 113:6234–6458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Natural Science Foundation of China (NNSFC 21272172), the Program for New Century Excellent Talents in University (NCET-09-0894) and the Natural Science Foundation of Tianjin (12JCZDJC21000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianshun Zeng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Zhao, L. & Zeng, X. A Highly Selective Turn-on Fluorescent Chemodosimeter for Cu2+ Through a Cu2+-Promoted Redox Reaction. J Fluoresc 24, 1671–1677 (2014). https://doi.org/10.1007/s10895-014-1454-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1454-4

Keywords

Navigation