Skip to main content
Log in

Hydrophobic Interactions in Donor-Disulphide-Acceptor (DSSA) Probes Looking Beyond Fluorescence Resonance Energy Transfer Theory

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Donor –linker –acceptor (DSSA) is a concept in fluorescence chemistry with acceptor being a fluorescent compound (FRET) or quencher. The DSSA probes used to measure thiol levels in vitro and in vivo. The reduction potential of these dyes are in the range of −0.60 V, much lower than the best thiol reductant reported in literature, the DTT (−0.33 V). DSSA disulphide having an unusually low reduction potential compared to the typical thiol reductants is a puzzle. Secondly, DSSA probes have a cyclized rhodamine ring as acceptor which does not have any spectral overlap with fluorescein, but quenches its absorbance and fluorescence. To understand the structural features of DSSA probes, we have synthesized DSSANa and DSSAOr. The calculated reduction potential of these dyes suggest that DSSA probes have an alternate mechanism from the FRET based quenching, namely hydrophobic interaction or dye to dye quenching. The standard reduction potential change with increasing complexity and steric hindrance of the molecule is small, suggesting that ultra- low Eo’ has no contribution from the disulphide linker and is based on structural interactions between fluorescein and cyclized rhodamine. Our results help to understand the DSSA probe quenching mechanism and provide ways to design fluorescent probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig 6
Fig 7

Similar content being viewed by others

Abbreviations

DSSA:

Donor–Disulfide linker–acceptor

DSSAAl –DSSA:

Probe with cystamine as a linker, DSSAAr –DSSA probe probe with diaminophenyl disulfide as a linker

DSSANa – DSSA:

Probe with 2,2’-dithiodi (1-naphthylamine) as a linker

DSSAOr – DSSA:

Probe with o-diamino diphenyl disulphide as a linker

FRET:

Forster (Fluorescence) resonance energy transfer, chemiluminescence resonance energy transfer (CRET)

References

  1. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulphide/glutathione couple. Free Radical Bio Med 30:1191–1212

    Article  CAS  Google Scholar 

  2. Reed MC, Thomas RL, Pavisic J, James SJ, Ulrich CM, Nijhout HF et al (2008) A mathematical model of glutathione metabolism. Theor. Biol Med Model 5:3–16. doi:10.1186/1742-4682-5-8

    Article  Google Scholar 

  3. Embry MR, Belanger SE, Braunbeck TA, Burgos MG, Halder M, Hinton DE, Léonard MA, Lillicrap A, King TN, Whalej G et al (2010) The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol 97:79–87. doi:10.1016/j.aquatox.2009.12.008

    Article  CAS  PubMed  Google Scholar 

  4. Kirsten H (2011) Limits of the fish embryo toxicity test with Danio rerio as an alternative to the acute fish toxicity test. Dissertation. Ruperto – Carola University of Heidelberg.

  5. Pullela PK, Chiku T, Carvan MJ, Sem DS (2006) Fluorescence-based detection of thiols in vitro and in vivo using dithiol probes. Anal Biochem 352:265–273

    Article  CAS  PubMed  Google Scholar 

  6. Yin LL, Chen ZZ, Tong LL, Xu KH, Tang B (2009) Progress on Fluorescent Probes for Thiols. Chinese J Analyt Chem 37:1073–1081. doi:10.1016/S1872-2040(08)60117-6

    Article  CAS  Google Scholar 

  7. Bouffard J, Kim Y, Swager TM, Weissleder R, Hilderbrand SA (2008) A Highly Selective Fluorescent Probe for Thiol Bioimaging. Org Lett 10:37–40. doi:10.1021/ol702539v

    Article  CAS  PubMed  Google Scholar 

  8. Maeda H, Matsuno H, Ushida M, Katayama K, Saeki K, Itoh N (2005) 2,4-Dinitrobenzenesulfonyl Fluoresceins as Fluorescent Alternatives to Ellman’s Reagent in Thiol-Quantification Enzyme Assays. Angew Chem Int Ed 44:2922–2925. doi:10.1002/anie.200500114

    Article  CAS  Google Scholar 

  9. Yi L, Li H, Sun L, Liu L, Zhang C, Xi Z (2009) A Highly Sensitive Fluorescence Probe for Fast Thiol-Quantification Assay of Glutathione Reductase. Angew Chem Int Ed 48:4034–4037. doi:10.1002/anie.200805693

    Article  CAS  Google Scholar 

  10. Ahn YH, Lee JS, Chang YT (2007) Combinatorial Rosamine Library and Application to in Vivo Glutathione Probe. J Am Chem Soc 129:4510–4511. doi:10.1021/ja068230m

    Article  CAS  PubMed  Google Scholar 

  11. Lim CS, Masanta G, Kim HJ, Han JH, Kim HM, Cho BR (2011) Ratiometric Detection of Mitochondrial Thiols with a Two-Photon Fluorescent Probe. J Am Chem Soc 133:11132–11135. doi:10.1021/ja205081s

    Article  CAS  PubMed  Google Scholar 

  12. Lee MH, Han JH, Lee JH, Choi HG, Kang C, Kim JS (2012) Mitochondrial Thioredoxin-Responding Off − On Fluorescent Probe. J Am Chem Soc 134:17314–17319. doi:10.1021/ja308446y

    Article  CAS  PubMed  Google Scholar 

  13. Zhu B, Zhang X, Li Y, Wang P, Zhang H, Zhuang X (2010) A colorimetric and ratiometric fluorescent probe for thiols and its bioimaging applications. Chem Commun 46:5710–5712. doi:10.1039/c0cc00477d

    Article  CAS  Google Scholar 

  14. Chen X, Zhou Y, Peng X, Yoon J (2010) Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev 39:2120–2135. doi:10.1039/b925092a

    Article  CAS  PubMed  Google Scholar 

  15. Chazotte B (2011) Labeling Mitochondria with TMRM or TMRE. CSH Protoc 7:895–897. doi:10.1101/pdb.prot5641

    Google Scholar 

  16. Zhang S, Yan Y, Bi S (2009) Design of Molecular Beacons as Signaling Probes for Adenosine Triphosphate Detection in Cancer Cells Based on Chemiluminescence Resonance Energy Transfer. Anal Chem 81:8695–8701

    Article  CAS  PubMed  Google Scholar 

  17. Habeeb Muhammed M A, Shaw AK, Pal SK, Pradeep T (2008). Quantum Clusters of Gold Exhibiting FRET, J. Phys. Chem. C,112 (37), 14324–14330

  18. Cleland WW (1964) Dithiothreitol, a New Protective Reagent for SH Groups. Biochemistry 3:480–482

    Article  CAS  PubMed  Google Scholar 

  19. Mickey B, Howard J (1995) Rigidity of Microtubules Is Increased by Stabilizing Agents. J Cell Biol 130:909–917

    Article  CAS  PubMed  Google Scholar 

  20. Aitken CE, Marshall RA, Puglisi JD (2008) An Oxygen Scavenging System for Improvement of Dye Stability in Single-Molecule Fluorescence Experiments. Biophys J 94:1826–1835. doi:10.1529/biophysj.107.117689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kolossov VL, Spring BQ, Clegg RM, Henry JJ, Sokolowski A, Kenis PJA, Gaskins HR (2011) Development of a high-dynamic range, GFP-based FRET probe sensitive to oxidative microenvironments. Exp Biol Med (Maywood) 236:681–691

    Article  CAS  PubMed Central  Google Scholar 

  22. Peng H, Chen W, Cheng Y, Hakuna L, Strongin R, Wang B (2012) Thiol Reactive Probes and Chemosensors. Sensors 12:15907–15946. doi:10.3390/s121115907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Akif M, Khare G, Tyagi AK, Mande SC, Sardesai AA et al (2008) Functional Studies of Multiple Thioredoxins from Mycobacterium tuberculosis. J Bacteriol 190:7087–7095. doi:10.1128/JB.00159-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Herzog CA (2011) Glutathione and non-glutathione-based oxidant control in the endoplasmic reticulum. J Cell Sci 124:847–855. doi:10.1242/jcs.080895

    Article  Google Scholar 

  25. Tang B, Xing Y, Li P, Zhang N, Yu F, Yang G (2007) A Rhodamine-Based Fluorescent Probe Containing a Se-N Bond for Detecting Thiols and Its Application in Living Cells. J Am Chem Soc 129:11666–11667. doi:10.1021/ja072572q

    Article  CAS  PubMed  Google Scholar 

  26. Abe H, Ito Y, Shibata A, Ito M (2012) Thiol detection method US 8187825 B2

  27. Shibata A, Furukawa K, Abe H, Tsuneda S, Ito Y (2008) Rhodamine-based fluorogenic probe for imaging biological thiol. Bioorg Med Chem Lett 18:2246–2249. doi:10.1016/j.bmcl.2008.03.014

    Article  CAS  PubMed  Google Scholar 

  28. Li H, Fan J, Wang J, Tian M, Du J, Sun S, Sun P, Peng X (2009) A fluorescent chemodosimeter specific for cysteine: effective discrimination of cysteine from homocysteine. Chem Commun 39:5904–5906. doi:10.1039/b907511a

    Article  Google Scholar 

  29. Cai HH, Wang H, Wang J, Wei W, Yang PH, Cai J (2011) Naked eye detection of glutathione in living cells using rhodamine B-functionalized gold nanoparticles coupled with FRET. Dyes Pigments 92:778–782. doi:10.1016/j.dyepig.2011.06.016

    Article  Google Scholar 

  30. Jun ME, Roy B, Ahn KH (2011) Turn-on fluorescent sensing with reactive probes. Chem Commun 47:7583–7601. doi:10.1039/C1CC00014D

    Article  CAS  Google Scholar 

  31. Long L, Lin W, Chen B, Gao W, Yuan L (2011) Construction of a FRET-based ratiometric fluorescent thiol probe. Chem Commun 47:893–895. doi:10.1039/c0cc03806g

    Article  CAS  Google Scholar 

  32. Monostori P, Wittmann G, Karg E, Turi S (2009) Determination of glutathione and glutathione disulfide in biological samples: An in-depth review. J Chromatogr B 877:3331–3346. doi:10.1016/j.jchromb.2009.06.016

    Article  CAS  Google Scholar 

  33. Duan YL, Shi YG, Chen JH, Wu XH, Wang GK, Zhou Y, Zhang JF (2012) 1,8-Naphthyridine modified rhodamine B derivative and Cu2+ complex: colorimetric sensing of thiols in aqueous media. Tetrahedron Lett 53:6544–6547

    Article  CAS  Google Scholar 

  34. Lakowicz JR (2006) Handbook of principle of fluorescence spectroscopy book. University of Maryland School of. Medicine, USA

    Book  Google Scholar 

  35. Sem DS (2009) Method for detecting kinase activity with thiol reactive fluorescent reagents-US 7585643, B2

  36. Timothy J (2011) Fluorescence Probes for Cellular Thiol and Disulfide Detection: Sythesis and Biophysical Characterization. Marquette University, Dissertation

    Google Scholar 

  37. Getz EB, Xiao M, Chakrabarty T, Cooke R, Selvin PR et al (1999) A Comparison between the Sulfhydryl Reductants Tris (2 carboxyethyl) phosphine and Dithiothreitol for Use in Protein Biochemistry. Anal Biochem 273:73–80

    Article  CAS  PubMed  Google Scholar 

  38. Johansson MK, Fidder H, Dick D, Cook RM (2002) Intramolecular dimers: a new strategy to fluorescence quenching in dual-labeled oligonucleotide probes. J Am Chem Soc 124:6950–6956. doi:10.1021/ja025678o

    Article  CAS  PubMed  Google Scholar 

  39. Marras SAE (2006) Handbook of Fluorescent Energy Transfer Nucleic Acid Probes: Designs and Protocols. Methods Mol Biol 335:3–16

    CAS  PubMed  Google Scholar 

  40. Johansson MK (2006) Handbook of Fluorescent Energy Transfer Nucleic Acid Probes: Designs and Protocols. Methods Mol Biol 335:17–29

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramamoorthy Siva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjeeva, S.K., Korrapati, S., Nair, C.B. et al. Hydrophobic Interactions in Donor-Disulphide-Acceptor (DSSA) Probes Looking Beyond Fluorescence Resonance Energy Transfer Theory. J Fluoresc 24, 1297–1306 (2014). https://doi.org/10.1007/s10895-014-1414-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1414-z

Keywords

Navigation