Skip to main content
Log in

Fret Studies of Conformational Changes in Heparin-Binding Peptides

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

FRET (Förster Resonance Energy Transfer) was applied to study structural properties of heparin-binding peptides containing the sequence XBBBXXBX where ‘X’ represents hydropathic or uncharged and ‘B’ represents basic amino acids. Internally quenched fluorogenic peptides were synthesized containing the fluorescent donor oaminobenzoic acid (o-Abz) and the acceptor dinitrophenyl ethylenediamine (Eddnp) group. Using the CONTIN computational package, distance distributions were recovered from time resolved fluorescence data, associated to end-to-end distances of the peptides. The peptides containing three or four repeat units have random structure in aqueous medium, and the interaction with low molecular weight heparin stabilized short end-to end distances. Experiments in water/trifluoroethanol (TFE) mixtures showed changes in distance distributions compatible with compact conformations stabilized above 40 % volume content of TFE in the mixture. Similar changes in distance distributions were also observed for the peptides in interaction with SDS micelles in aqueous suspensions and circular dichroism data revealed alpha-helix formation in the peptides in interaction with heparin, SDS micelles or the co-solvent TFE. The process is dependent on electrostatic and hydrogen bond interactions and the end-to-end distances obtained are smaller than expected for the peptides in linear α-helix conformation, indicating the occurrence of structural arrangements leading to additional decrease in the distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jackson RL, Busch SJ, Cardin AD (1991) Glycosoaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev 71:481–529

    CAS  PubMed  Google Scholar 

  2. Lane DA, Denton J, Flynn AM, Thunberg L, Lindahl U (1984) Anticoagulant activities of heparin oligosaccharides and their neutralization by platelet factor 4. Biochem J 218:725–732

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Olson ST, Bjork I, Sheffer R, Craig PA, Shore JD, Choay J (1992) Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. J Biol Chem 267:12528–12538

    CAS  PubMed  Google Scholar 

  4. Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, Carrell RW (1997) The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci U S A 94:14683–14688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chuang YJ, Swanson R, Raja SM, Olson ST (2001) Heparin enhances the specificity of antithrombin for thrombin and factor Xa independent of the reactive centre loop sequence. Evidence for an exosite determinant of factor Xa specificity in heparin-activated antithrombin. J Biol Chem 276:14961–14971

    Article  CAS  PubMed  Google Scholar 

  6. Choay J, Lormeau JC, Petitou M, Sinay P, Fareed J (1981) Structural studies on a biologically active hexasaccharide obtained from heparin. Ann N Y Acad Sci 370:644–649

    Article  CAS  PubMed  Google Scholar 

  7. Pixley R, Danishefsky I (1982) Preparation of highly stable antithrombin-sepharose and utilization for the fractionation of heparin. Thromb Res 26:129–133

    Article  CAS  PubMed  Google Scholar 

  8. Höök M, Björk I, Hopwood J, Lindahl U (1976) Anticoagulant activity of heparin: separation of high-activity and low-activity heparin species by affinity chromatography on immobilized antithrombin. FEBS Lett 66:90–93

    Article  PubMed  Google Scholar 

  9. Racanelli A, Fareed J, Walenga JM, Coyne E (1985) Biochemical and pharmacologic studies on the protamine interactions with heparin, its fractions and fragments. Semin Thromb Hemost 11:176–189

    Article  CAS  PubMed  Google Scholar 

  10. DeLucia A, Wakefield TW, Andrews PC, Nichol BJ, Kadell AM, Wrobleski SK, Downing LJ, Stanley JC (1993) Efficacy and toxicity of differently charged polycationic protamine-like peptides for heparin anticoagulation reversal. J Vasc Surg 18:49–60

    Article  PubMed  Google Scholar 

  11. Schick BP, Gradowski JF, San Antonio JD, Martinez J (2001) Novel design of peptides to reverse the anticoagulant activities of heparin and other glycosaminoglycans. Thromb Haemost 85:482–487

    CAS  PubMed  Google Scholar 

  12. Schick BP, Maslow D, Moshinski A, San Antonio JD (2004) Novel concatameric heparin-binding peptides reverse heparin and low-molecular-weight heparin anticoagulant activities in patient plasma in vitro and in rats in vivo. Blood 103:1356–1363

    Article  CAS  PubMed  Google Scholar 

  13. Liu S, Zhou F, Höök M, Carson DD (1997) A heparin-binding synthetic peptide of heparin/heparan sulfate-interacting protein modulates blood coagulation activities. Proc Natl Acad Sci U S A 94:1739–1744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wang J, Rabenstein DL (2006) Interaction of heparin with two synthetic peptides that neutralize the anticoagulant activity of heparin. Biochemistry 45:15740–15747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Verrecchio A, Germann MW, Schick BP, Kung B, Twardowski T, San Antonio JD (2000) Design of peptides with high affinities for heparin and endothelial cell proteoglycans. J Biol Chem 275:7701–7707

    Article  CAS  PubMed  Google Scholar 

  16. Cardin AD, Weintraub HJR (1989) Molecular modeling of protein-glycosaminoglycan interactions. Arterioscler Thromb Vasc Biol 9:21–32

    Article  CAS  Google Scholar 

  17. Montserret R, Aubert-Foucher E, McLeish MJ, Hill JM, Ficheux D, Jaquinod M, van der Rest M, Deléage G, Penin F (1999) Structural analysis of the heparin-binding site of the NC1 domain of collagen XIV by CD and NMR. Biochemistry 38:6479–6488

    Article  CAS  PubMed  Google Scholar 

  18. Ringstad L, Schmidtchen A, Malmsten M (2006) Effect of peptide length on the interaction between consensus peptides and DOPC/DOPA bilayers. Langmuir 22:5042–5050

    Article  CAS  PubMed  Google Scholar 

  19. Capila I, Linhardt RJ (2002) Heparin-protein interactions. Angew Chem Int Ed 41:390–412

    Article  CAS  Google Scholar 

  20. Rullo A, Nitz M (2009) Importance of spatial display of charged residues in heparin-peptide interactions. Biopolymers 93:290–298

    Article  Google Scholar 

  21. Remko M, Van Duijnen PT, Broer R (2013) Structure and stability of complexes of charged structural units of heparin with arginine and lysine. RSC Adv 3:1789–1796

    Article  CAS  Google Scholar 

  22. Gershkolovich AA, Kholodovich VV (1996) Fluorogenic substrates for proteases based on intramolecular fluorescence energy transfer (IEFTS). J Biochem Biophys Methods 33:135–162

    Article  Google Scholar 

  23. Knight CG (1995) Fluorometric assays of proteolytic enzymes. Methods Enzymol 248:18–34

    Article  CAS  PubMed  Google Scholar 

  24. Chagas JR, Portaro FC, Hirata IY, Almeida PC, Juliano MA, Juliano L, Prado ES (1995) Determinants of the unusual cleavage specificity of lysyl-bradykinin-releasing kallikreins. Biochem J 306:63–69

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Del Nery E, Chagas JR, Juliano MA, Prado ES, Juliano L (1995) Evaluation of the extent of the binding site in human tissue kallikrein by synthetic substrates with sequences of human kininogen fragments. Biochem J 312:233–238

    PubMed Central  PubMed  Google Scholar 

  26. Ito AS, Turchiello RF, Hirata IY, Cezari MH, Meldal M, Juliano L (1998) Fluorescent properties of amino acids labeled with orthoaminobenzoic acid. Biospectroscopy 4:395–402

    Article  CAS  PubMed  Google Scholar 

  27. Takara M, Ito AS (2005) General and specific solvent effects in optical spectra of ortho-aminobenzoic acid. J Fluoresc 15:171–177

    Article  CAS  PubMed  Google Scholar 

  28. Takara M, Eisenhut JK, Hirata IY, Juliano L, Ito AS (2009) Solvent effects in optical spectra of ortho-aminobenzoic acid derivatives. J Fluoresc 19:1053–1060

    Article  CAS  PubMed  Google Scholar 

  29. Turchiello RF, Lamy-Freund MT, Hirata IY, Juliano L, Ito AS (1998) Orto-aminobenzoic acid as a fluorescent probe for the interaction between peptides and micelles. Biophys Chem 73:217–225

    Article  CAS  PubMed  Google Scholar 

  30. Ray R (1993) Fluorescence quenching of o-Aminobenzoic acid by ethylene trithiocarbonate in aqueous micellar media. J Photochem Photobiol A 76:115–120

    Article  CAS  Google Scholar 

  31. Turchiello RF, Lamy-Freund MT, Hirata IY, Juliano L, Ito AS (2002) Ortho-aminobenzoic acid labeled bradykinins in interaction with lipid vesicles: a fluorescence study. Biopolymers 65:336–346

    Article  CAS  PubMed  Google Scholar 

  32. Kulinski T, Wennerberg AB, Rigler R, Provencher SW, Pooga M, Langel U, Bartfai T (1997) Conformational analysis of galanin using end to end distance distribution observed by Forster resonance energy transfer. Eur Biophys J 26:145–154

    Article  CAS  PubMed  Google Scholar 

  33. Souza ES, Hirata IY, Juliano L, Ito AS (2000) End-to-end distribution distances in bradykinin observed by fluorescence energy transfer. Bioch Biophys Acta 1474:251–261

    Article  Google Scholar 

  34. Ito AS, Souza ES, Barbosa SR, Nakaie CR (2001) Fluorescence study of conformational properties of melanotropins labeled with aminobenzoic acid. Biophys J 81:1180–1189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Montaldi LR, Berardi M, Souza ES, Juliano L, Ito AS (2012) End-to-end distance distribution in fluorescent derivatives of bradykinin in interaction with lipid vesicles. J Fluoresc 22:1151–1158

    Article  CAS  PubMed  Google Scholar 

  36. Pimenta DC, Nantes IL, Souza ES, Le Bonniec B, Ito AS, Tersariol ILS, Oliveira V, Juliano MA, Juliano L (2002) Interaction of heparin with internally quenched fluorogenic peptides derived from heparin-binding consensus sequences, kallistatin and anti-thrombin III. Biochem J 366:435–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hirata YI, Cezari MHS, Nakaie CR, Boschcov P, Ito AS, Juliano MA, Juliano L (1994) Internally quenched fluorogenic protease substrates: solid-phase synthesis and fluorescence spectroscopy of peptides containing ortho-aminobenzoyl/dinitrophenyl groups as donor-acceptor pairs. Lett Pept Sci 1:299–308

    Article  Google Scholar 

  38. Melhuish WH (1961) Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute. J Phys Chem 65:229–235

    Article  CAS  Google Scholar 

  39. Provencher SW (1982) CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242

    Article  Google Scholar 

  40. Hirota N, Mizuno K, Goto Y (1998) Group additive contributions to the alcohol-induced α-helix formation of melittin: implication for the mechanism of the alcohol effects on proteins. J Mol Biol 275:365–378

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Brazilian agencies FAPESP, CNPq and FAPESP projeto temático 12/50191-4 for financial support. Support from INCT-FCx, Brazil, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Sérgio de Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza, E.S., Katagiri, A.H., Juliano, L. et al. Fret Studies of Conformational Changes in Heparin-Binding Peptides. J Fluoresc 24, 885–894 (2014). https://doi.org/10.1007/s10895-014-1366-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1366-3

Keywords

Navigation