Skip to main content
Log in

Fluorescence Investigation of Interactions Between Novel Benzanthrone Dyes and Lysozyme Amyloid Fibrils

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A series of novel fluorescent benzanthrone dyes have been tested for their ability to identify and characterize fibrillar aggregates of lysozyme prepared by protein denaturation in concentrated ethanol solution (Feth) or acidic buffer (Fac). Quantitative parameters of the dye association with native and fibrillar protein have been derived from the results of fluorimetric titration. The binding characteristics proved to be different for Feth- and Fac-bound benzanthrones, highlighting the dye sensitivity to the distinctions in fibril morphology. By comparing the dye preference to fibrillar protein aggregates, AM2, A8 and A6 were selected as the most prospective amyloid tracers. Based on the analysis of red edge excitation shifts and fluorescence lifetimes of the amyloid-bound dyes it was assumed that surface grooves or dry “steric zipper” interface are potential fibril binding sites for the novel fluorophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 1698:131–153

    Article  PubMed  CAS  Google Scholar 

  2. Hill SE, Miti T, Richmond T, Muschol M (2011) Spatial extent of charge repulsion regulates assembly pathways for lysozyme amyloid fibrils. PLoS ONE 6:e18171

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Meijer JT, Roeters M, Viola V, Löwik DW, Vriend G, van Hest JC (2007) Stabilization of peptide fibrils by hydrophobic interaction. Langmuir 23:2058–2063

    Article  PubMed  CAS  Google Scholar 

  4. Chamberlain AK, MacPhee CE, Zurdo J, Morozova-Roche LA, Hill HA, Dobson CM, Davis JJ (2000) Ultrastructural organization of amyloid fibrils by atomic force microscopy. Biophys J 79:3282–3293

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Gharibyan AL, Zamotin V, Yanamandra K, Moskaleva OS, Margulis BA, Kostanyan IA, Morozova-Roche LA (2007) Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways. J Mol Biol 365:1337–1349

    Article  PubMed  CAS  Google Scholar 

  6. Wigenius J, Persson G, Widengren J, Inganäs O (2011) Interactions between a luminescent conjugated oligoelectrolyte and insulin during early phase of amyloid formation. Macromol Biosci 11:1120–1127

    Article  PubMed  CAS  Google Scholar 

  7. Dusa A, Kaylor J, Edridge S, Bodner N, Hong DP, Fink AL (2006) Characterization of oligomers during alpha-synuclein aggregation using intrinsic tryptophan fluorescence. Biochemistry 45:2752–2760

    Article  PubMed  CAS  Google Scholar 

  8. Gorbenko GP (2011) Fluorescence spectroscopy of protein oligomerization in membranes. J Fluoresc 21:945–951

    Article  PubMed  CAS  Google Scholar 

  9. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  10. Qin L, Vastl J, Gao J (2010) Highly sensitive amyloid detection enabled by thioflavin T dimers. Mol Biosyst 6:1791–1795

    Article  PubMed  CAS  Google Scholar 

  11. Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T. Anal Biochem 177:244–249

    Article  PubMed  CAS  Google Scholar 

  12. Bertoncini CW, Celej MS (2011) Small molecule fluorescent probes for the detection of amyloid self-assembly in vitro and in vivo. Curr Protein Pept Sci 12:205–220

    Article  PubMed  Google Scholar 

  13. Celej MS, Jares-Erijman EA, Jovin TM (2008) Fluorescent N-arylaminonaphthalene sulfonate probes for amyloid aggregation of alpha-synuclein. Biophys J 94:4867–4879

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Mishra R, Sjölander D, Hammarström P (2011) Spectroscopic characterization of diverse amyloid fibrils in vitro by the fluorescent dye Nile red. Mol Biosyst 7:1232–1240

    Article  PubMed  CAS  Google Scholar 

  15. Makwana PK, Jethva PN, Roy I (2011) Coumarin 6 and 1,6-diphenyl-1,3,5-hexatriene (DPH) as fluorescent probes to monitor protein aggregation. Analyst 136:2161–2167

    Article  PubMed  CAS  Google Scholar 

  16. Ribeiro MG, Vicente MH, Santos IC, Santos I, Outeiro TF, Paulo A (2011) Synthesis and in vitro evaluation of fluorinated styryl benzazoles as amyloid-probes. Bioorg Med Chem 19:7698–7710

    Article  CAS  Google Scholar 

  17. Ran C, Xu X, Raymond SB, Ferrara BJ, Neal K, Bacskai BJ, Medarova Z, Moore A (2009) Design, synthesis, and testing of difluoroboron derivatized curcumins as near infrared probes for in vivo detection of amyloid-β deposits. J Am Chem Soc 131:15257–15261

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Kundu B, Guptasarma P (2002) Use of a hydrophobic dye to indirectly probe the structural organization and conformational plasticity of molecules in amorphous aggregates of carbonic anhydrase. Biochem Biophys Res Commun 293:572–577

    Article  PubMed  CAS  Google Scholar 

  19. Sabaté R, Lascu I, Saupe SJ (2008) On the binding of Thioflavin-T to HET-s amyloid fibrils assembled at pH 2. J Struct Biol 162:387–396

    Article  PubMed  CAS  Google Scholar 

  20. Vus K, Trusova V, Gorbenko G, Kirilova E, Kirilov G, Kalnina I, Kinnunen P (2012) Novel aminobenzanthrone dyes for amyloid fibril detection. Chem Phys Lett 532:110–115

    Article  CAS  Google Scholar 

  21. Kirilova EM, Kalnina I, Kirilov GK, Meirovics I (2008) Spectroscopic study of benzanthrone 3-N-derivatives as new hydrophobic fluorescent probes for biomolecules. J Fluoresc 18:645–648

    Article  PubMed  CAS  Google Scholar 

  22. Holley M, Eginton C, Schaefer D, Brown LR (2008) Characterization of amyloidogenesis of hen egg lysozyme in concentrated ethanol solution. Biochem Biophys Res Commun 373:164–168

    Article  PubMed  CAS  Google Scholar 

  23. Morozova-Roche LA, Zurdo J, Spencer A, Noppe W, Receveur V, Archer DB, Joniau M, Dobson CM (2000) Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants. J Struct Biol 130:339–351

    Article  PubMed  CAS  Google Scholar 

  24. Rurack K, Spieles M (2011) Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600–1000 nm. Anal Chem 83:1232–1242

    Article  PubMed  CAS  Google Scholar 

  25. Appel TR, Richter S, Linke RP, Makovitzky J (2005) Histochemical and topo-optical investigations on tissue-isolated and in vitro amyloid fibrils. Amyloid 12:174–183

    Article  PubMed  CAS  Google Scholar 

  26. Dienes A (1975) Comparative gain measurements for twelve organic laser dye solutions. J Appl Phys 7:135–139

    Article  CAS  Google Scholar 

  27. Chattopadhyay A, Mukherjee S (1999) Depth-dependent solvent relaxation in membranes: wavelength-selective fluorescence as a membrane dipstick. Langmuir 15:2142–2148

    Article  CAS  Google Scholar 

  28. Lindgren M, Sörgjerd K, Hammarström P (2005) Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy. Biophys J 88:4200–4212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Sasahara K, Yagi H, Sakai M, Naiki H, Goto Y (2008) Amyloid nucleation triggered by agitation of β2-microglobulin under acidic and neutral pH conditions. Biochemistry 47:2650–2660

    Article  PubMed  CAS  Google Scholar 

  30. Morel B, Varela L, Azuaga AI, Conejero-Lara F (2010) Environmental conditions affect the kinetics of nucleation of amyloid fibrils and determine their morphology. Biophys J 99:3801–3810

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Morozova-Roche LA (2007) Equine lysozyme: the molecular basis of folding, self-assembly and innate amyloid toxicity. FEBS Lett 581:2587–2592

    Article  PubMed  CAS  Google Scholar 

  32. Frare E, Polverino De Laureto P, Zurdo J, Dobson CM, Fontana A (2004) A highly amyloidogenic region of hen lysozyme. J Mol Biol 340:1153–1165

    Article  PubMed  CAS  Google Scholar 

  33. Malisauskas M, Zamotin V, Jass J, Noppe W, Dobson CM, Morozova-Roche LA (2003) Amyloid protofilaments from the calcium-binding protein equine lysozyme: formation of ring and linear structures depends on pH and metal ion concentration. J Mol Biol 330:879–890

    Article  PubMed  CAS  Google Scholar 

  34. Goda S, Takano K, Yamagata Y, Nagata R, Akutsu H, Maki S, Namba K, Yutani K (2000) Amyloid protofilament formation of hen egg lysozyme in highly concentrated ethanol solution. Protein Sci 9:369–375

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Yonezawa Y, Tanaka S, Kubota T, Wakabayashi K, Yutani K, Fujiwara S (2002) An insight into the pathway of the amyloid fibril formation of hen egg white lysozyme obtained from a small-angle X-ray and neutron scattering study. J Mol Biol 323:237–351

    Article  PubMed  CAS  Google Scholar 

  36. Tanaka S, Oda Y, Ataka M, Onuma K, Fujiwara S, Yonezawa Y (2001) Denaturation and aggregation of hen egg lysozyme in aqueous ethanol solution studied by dynamic light scattering. Biopolymers 59:370–379

    Article  PubMed  CAS  Google Scholar 

  37. Lehmann MS, Mason SA, McIntyre GJ (1985) Study of ethanol-lysozyme interactions using neutron diffraction. Biochemistry 24:5862–5869

    Article  PubMed  CAS  Google Scholar 

  38. Liu W, Prausnitz JM, Blanch HW (2004) Amyloid fibril formation by peptide LYS (11–36) in aqueous trifluoroethanol. Biomacromolecules 5:1818–1823

    Article  PubMed  CAS  Google Scholar 

  39. Aso Y, Shiraki K, Takagi M (2007) Systematic analysis of aggregates from 38 kinds of non disease-related proteins: identifying the intrinsic propensity of polypeptides to form amyloid fibrils. Biosci Biotechnol Biochem 71:1313–1321

    Article  PubMed  CAS  Google Scholar 

  40. Arnaudov LN, de Vries R (2005) Thermally induced fibrillar aggregation of hen egg white lysozyme. Biophys J 88:515–526

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Zurdo J, Guijarro JI, Jiménez JL, Saibil HR, Dobson CM (2001) Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain. J Mol Biol 311:325–340

    Article  PubMed  CAS  Google Scholar 

  42. Kuehner DE, Engmann J, Fergg F, Wernick M, Blanch HW, Prausnitz JM (1999) Lysozyme net charge and ion binding in concentrated aqueous electrolyte solutions. J Phys Chem B 103:1368–1374

    Article  CAS  Google Scholar 

  43. Tani F, Murata M, Higasa T, Goto M, Kitabatake N, Doi E (1995) Molten globule state of protein molecules in heat-induced transparent food gels. J Agric Food Chem 43:2325–2331

    Article  CAS  Google Scholar 

  44. Tomlinson JH, Craven CJ, Williamson MP, Pandya MJ (2009) Dimerization of protein G B1 domain at low pH: a conformational switch caused by loss of a single hydrogen bond. Proteins 78:1652–1661

    Google Scholar 

  45. Cordier F, Grzesiek S (2002) Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR. J Mol Biol 317:739–752

    Article  PubMed  CAS  Google Scholar 

  46. Durchschlag H, Zipper P (2004) Modeling the hydration of proteins at different pH values. Progr Colloid Polym Sci 127:98–112

    CAS  Google Scholar 

  47. Zhang Y, Lagi M, Liu D, Mallamace F, Fratini E, Baglioni P, Mamontov E, Hagen M, Chen SH (2009) Observation of high-temperature dynamic crossover in protein hydration water and its relation to reversible denaturation of lysozyme. J Chem Phys 130:135101

    Article  PubMed  CAS  Google Scholar 

  48. Sasahara K, Demura M, Nitta K (2000) Partially unfolded equilibrium state of hen lysozyme studied by circular dichroism spectroscopy. Biochemistry 39:6475–6482

    Article  PubMed  CAS  Google Scholar 

  49. Krebs MR, Wilkins DK, Chung EW, Pitkeathly MC, Chamberlain AK, Zurdo J, Robinson CV, Dobson CM (2000) Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the beta-domain. J Mol Biol 300:541–549

    Article  PubMed  CAS  Google Scholar 

  50. Fändrich M, Meinhardt J, Grigorieff N (2009) Structural polymorphism of Alzheimer Abeta and other amyloid fibrils. Prion 3:89–93

    Article  PubMed Central  PubMed  Google Scholar 

  51. Verel R, Tomka IT, Bertozzi C, Cadalbert R, Kammerer RA, Steinmetz MO, Meier BH (2008) Polymorphism in an amyloid-like fibril-forming model peptide. Angew Chem Int Ed Engl 47:5842–5845

    Article  PubMed  CAS  Google Scholar 

  52. Petkova AT, Buntkowsky G, Dyda F, Leapman RD, Yau WM, Tycko R (2004) Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. J Mol Biol 335:247–260

    Article  PubMed  CAS  Google Scholar 

  53. Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science 307:262–265

    Article  PubMed  CAS  Google Scholar 

  54. Serpell LC (2000) Alzheimer’s amyloid fibrils: structure and assembly. Biochim Biophys Acta 1502:16–30

    Article  PubMed  CAS  Google Scholar 

  55. Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Näslund J, Lannfelt L (2001) The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat Neurosci 4:887–8893

    Article  PubMed  CAS  Google Scholar 

  56. Murakami K, Irie K, Morimoto A, Ohigashi H, Shindo M, Nagao M, Shimizu T, Shirasawa T (2003) Neurotoxicity and physicochemical properties of Aβ mutant peptides from cerebral amyloid angiopathy: implication for the pathogenesis of cerebral amyloid angiopathy and Alzheimer’s disease. J Biol Chem 278:46179–46187

    Article  PubMed  CAS  Google Scholar 

  57. Biancalana M, Koide S (2010) Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804:1405–1412

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Wu C, Scott J, Shea JE (2012) Binding of Congo red to amyloid protofibrils of the Alzheimer Aβ(9–40) peptide probed by molecular dynamics simulations. Biophys J 103:550–557

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Groenning M, Olsen L, van de Weert M, Flink JM, Frokjaer S, Jorgensen FS (2007) Study on the binding of Thioflavin T to beta-sheet-rich and non-beta-sheet cavities. J Struct Biol 158:358–369

    Article  PubMed  CAS  Google Scholar 

  60. Biancalana M, Makabe K, Koide A, Koide S (2009) Molecular mechanism of Thioflavin-T binding to the surface of beta-rich peptide self-assemblies. J Mol Biol 385:1052–1063

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Klunk WE, Pettegrew JW, Abraham DJ (1989) Quantitative evaluation of Congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J Histochem Cytochem 37:1273–1281

    Article  PubMed  CAS  Google Scholar 

  62. Krebs MR, Bromley EH, Donald AM (2005) The binding of thioflavin-T to amyloid fibrils: localisation and implications. J Struct Biol 149:30–37

    Article  PubMed  CAS  Google Scholar 

  63. Chattopadhyay A (2003) Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach. Chem Phys Lipids 122:3–17

    Article  PubMed  CAS  Google Scholar 

  64. Demchenko AP (1982) On the nanosecond mobility in proteins: edge excitation fluorescence red shift of protein-bound 2-(p-toluidinylnaphthalene)-6-sulfonate. Biophys Chem 15:101–109

    Article  PubMed  CAS  Google Scholar 

  65. Chattopadhyay A, Mukherjee S (1999) Red edge excitation shift of a deeply embedded membrane probe: implications in water penetration in the bilayer. J Phys Chem B 103:8180–8185

    Article  CAS  Google Scholar 

  66. Nelson R, Sawaya MR, Balbirnie M, Madsen A, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Reddy G, Straub JE, Thirumalai D (2010) Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires. Proc Natl Acad Sci U S A 107:21459–21464

    Article  PubMed Central  PubMed  Google Scholar 

  68. Zheng J, Jang H, Ma B, Tsai C, Nussinov R (2007) Modeling the Alzheimer Aβ17-42 fibril architecture: tight intermolecular sheet-sheet association and intramolecular hydrated cavities. Biophys J 93:3046–3057

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Dobretsov GE, Syrejshchikova TI, Gryzunov YA, Yakimenko MN (1998) Quantification of fluorescent molecules in heterogeneous media by use of the fluorescence decay amplitude analysis. J Fluoresc 8:27–33

    Article  CAS  Google Scholar 

  70. Sarkar N, Das K, Nath DN, Bhattacharyya K (1994) Twisted charge transfer process of Nile Red in homogeneous solution and in faujasite zeolite. Langmuir 10:326–329

    Article  CAS  Google Scholar 

  71. Togashi DM, Ryder AG (2006) Time-Resolved fluorescence studies on bovine serum albumin denaturation process. J Fluoresc 16:153–160

    Article  PubMed  CAS  Google Scholar 

  72. Stsiapura VI, Maskevich AA, Kuzmitsky VA, Uversky VN, Kuznetsova IM, Turoverov KK (2008) Thioflavin T as a molecular rotor: fluorescent properties of thioflavin T in solvents with different viscosity. J Phys Chem B 112:15893–15902

    Article  PubMed  CAS  Google Scholar 

  73. Wu C, Wang Z, Lei H, Zhang W, Duan Y (2007) Dual binding modes of Congo red to amyloid protofibril surface observed in molecular dynamics simulations. J Am Chem Soc 129:1225–1232

    Article  PubMed  CAS  Google Scholar 

  74. Wu C, Bowers MT, Shea JE (2011) On the origin of the stronger binding of PIB over thioflavin T to protofibrils of the Alzheimer amyloid-β peptide: a molecular dynamics study. Biophys J 100:1316–1324

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Wolfe LS, Calabrese MF, Nath A, Blaho DV, Miranker AD, Xiong Y (2010) Protein-induced photophysical changes to the amyloid indicator dye thioflavin T. Proc Natl Acad Sci U S A 107:16863–16868

    Article  PubMed Central  PubMed  Google Scholar 

  76. LeVine H (1995) Thioflavine T interaction with amyloid β-sheet structures. Amyloid 2:1–6

    Article  CAS  Google Scholar 

  77. Sabate R, Saupe SJ (2007) Thioflavin T fluorescence anisotropy: an alternative technique for the study of amyloid aggregation. Biochem Biophys Res Commun 360:135–138

    Article  PubMed  CAS  Google Scholar 

  78. Schütz AK, Soragni A, Hornemann S, Aguzzi A, Ernst M, Böckmann A, Meier BH (2011) The amyloid-Congo red interface at atomic resolution. Angew Chem Int Ed Engl 50:5956–5960

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateryna Vus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vus, K., Trusova, V., Gorbenko, G. et al. Fluorescence Investigation of Interactions Between Novel Benzanthrone Dyes and Lysozyme Amyloid Fibrils. J Fluoresc 24, 493–504 (2014). https://doi.org/10.1007/s10895-013-1318-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1318-3

Keywords

Navigation