Skip to main content

Advertisement

Log in

Development of a Fluorescent Enzyme-Linked DNA Aptamer-Magnetic Bead Sandwich Assay and Portable Fluorometer for Sensitive and Rapid Leishmania Detection in Sandflies

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A fluorescent peroxidase-linked DNA aptamer-magnetic bead sandwich assay is described which detects as little as 100 ng of soluble protein extracted from Leishmania major promastigotes with a high molarity chaotropic salt. Lessons learned during development of the assay are described and elucidate the pros and cons of using fluorescent dyes or nanoparticles and quantum dots versus a more consistent peroxidase-linked Amplex Ultra Red (AUR; similar to resazurin) fluorescence version of the assay. While all versions of the assays were highly sensitive, the AUR-based version exhibited lower variability between tests. We hypothesize that the AUR version of this assay is more consistent, especially at low analyte levels, because the fluorescent product of AUR is liberated into bulk solution and readily detectable while fluorophores attached to the reporter aptamer might occasionally be hidden behind magnetic beads near the detection limit. Conversely, fluorophores could be quenched by nearby beads or other proximal fluorophores on the high end of analyte concentration, if packed into a small area after magnetic collection when an enzyme-linked system is not used. A highly portable and rechargeable battery-operated fluorometer with on board computer and color touchscreen is also described which can be used for rapid (<1 h) and sensitive detection of Leishmania promastigote protein extracts (∼100 ng per sample) in buffer or sandfly homogenates for mapping of L. major parasite geographic distributions in wild sandfly populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kobets T, Grekov I, Lipoldova M (2012) Leishmaniasis: prevention, parasite detection and treatment. Curr Med Chem 19:1443–1474

    Article  CAS  PubMed  Google Scholar 

  2. O’Daly JA, Spinetti HM, Gleason J, Rodríguez MB (2013) Clinical and immunological analysis of cutaneous leishmaniasis before and after different treatments. J Parasitol Res 2013:657016. doi:10.1155/2013/657016

    PubMed Central  PubMed  Google Scholar 

  3. Palatnik-de-Sousa CB, Day MJ (2011) One Health: the global challenge of epidemic and endemic leishmaniasis. Parasit Vectors 4:197. doi:10.1186/1756-3305-4-197

    Article  PubMed Central  PubMed  Google Scholar 

  4. Sundar S, Rai M (2002) Laboratory diagnosis of visceral leishmaniasis. Clin Diag Lab Immunol 9:951–958

    CAS  Google Scholar 

  5. Souza AP, Soto M, Costa JM, Boaventura VS, de Oliveira CI, Cristal JR, Barral-Netto M, Barral A (2013) Towards a more precise serological diagnosis of human tegumentary leishmaniasis using Leishmania recombinant proteins. PLoS One 8(6):e66110. doi:10.1371/journal.pone.0066110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Moreno EC, Gonçalves AV, Chaves AV, Melo MN, Lambertucci JR, Andrade AS, Negrão-Corrêa D, de Figueiredo Antunes CM, Carneiro M (2009) Inaccuracy of enzyme-linked immunosorbent assay using soluble and recombinant antigens to detect asymptomatic infection by Leishmania infantum. PLoS Negl Trop Dis. doi:10.1371/journal.pntd.0000536, 3e536

    PubMed Central  PubMed  Google Scholar 

  7. McAvin JC, Swanson KI, Chan AS, Quintana M, Coleman RE (2012) Leishmania detection in sand flies using a field-deployable real-time analytic system. Mil Med 177:460–466

    Article  PubMed  Google Scholar 

  8. Paiva BR, Secundino NF, Nascimento JC, Pimenta PF, Galati EA, Junior HF, Malafronte RS (2006) Detection and identification of Leishmania species in field-captured phlebotomine sandflies based on mini-exon gene PCR. Acta Trop 99:252–259

    Article  CAS  PubMed  Google Scholar 

  9. Bruno JG, Phillips T, Carrillo MP, Crowell R (2009) Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection. J Fluoresc 19:427–435

    Article  CAS  PubMed  Google Scholar 

  10. Wei B, Li F, Yang H, Yu L, Zhao K, Zhou R, Hu Y (2012) Magnetic beads-based enzymatic spectrofluorometric assay for rapid and sensitive detection of antibody against ApxIVA of Actinobacillus pleuropneumoniae. Biosens Bioelectron 35:390–393. doi:10.1016/j.bios.2012.03.027

    Article  CAS  PubMed  Google Scholar 

  11. Yolken RH, Stopa PJ (1979) Enzyme-linked fluorescence assay: ultrasensitive solid-phase assay for detection of human rotavirus. J Clin Microbiol 10:317–332

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Duan N, Wu S, Zhu C, Ma X, Wang Z, Yu Y, Jiang Y (2012) Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. Anal Chim Acta 723:1–6

    Article  CAS  PubMed  Google Scholar 

  13. Wang FB, Rong Y, Fang M, Yuan JP, Peng CW, Liu SP, Li Y (2013) Recognition and capture of metastatic hepatocellular carcinoma cells using aptamer-conjugated quantum dots and magnetic particles. Biomaterials 34:3816–3827. doi:10.1016/j.biomaterials.2013.02.018

    Article  CAS  PubMed  Google Scholar 

  14. Ikanovic M, Rudzinski WE, Bruno JG, Allman A, Carrillo MP, Dwarakanath S, Bhahdigadi S, Rao P, Kiel JL, Andrews CJ (2007) Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores. J Fluoresc 17:193–199

    Article  CAS  PubMed  Google Scholar 

  15. Dwarakanath S, Bruno JG, Shastry A, Phillips T, John AA, Kumar A, Stephenson LD (2004) Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Biochem Biophys Res Commun 325:739–743

    Article  CAS  PubMed  Google Scholar 

  16. Fitzpatrick JA, Andreko SK, Ernst LA, Waggoner AS, Ballou B, Bruchez MP (2009) Long-term persistence and spectral blue shifting of quantum dots in vivo. Nano Lett 9:2736–2741. doi:10.1021/nl901534q

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Generalov R, Kavaliauskiene S, Westrøm S, Chen W, Kristensen S, Juzenas P (2011) Entrapment in phospholipid vesicles quenches photoactivity of quantum dots. Int J Nanomed 6:1875–1888. doi:10.2147/IJN.S22953

    CAS  Google Scholar 

  18. Grabolle M, Ziegler J, Merkulov A, Nann T, Resch-Genger U (2008) Stability and fluorescence quantum yield of CdSe-ZnS quantum dots-influence of the thickness of the ZnS shell. Ann N Y Acad Sci 1130:235–241. doi:10.1196/annals.1430.021

    Article  CAS  PubMed  Google Scholar 

  19. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological application of quantum dots. Biomaterials 28(31):4717–4732

    Article  CAS  PubMed  Google Scholar 

  20. Ji X, Palui G, Avellini T, Na HB, Yi C, Knappenberger KL Jr, Mattoussi H (2012) On the pH-dependent quenching of quantum dot photoluminescence by redox active dopamine. J Am Chem Soc 134:6006–6017. doi:10.1021/ja300724x

    Article  CAS  PubMed  Google Scholar 

  21. Liu YS, Sun Y, Vernier PT, Liang CH, Chong SY, Gundersen MA (2007) pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. J Phys Chem C Nanomater Interfaces 111:2872–2878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Riegler J, Ditengou F, Palme K, Nann T (2008) Blue shift of CdSe/ZnS nanocrystal-labels upon DNA-hybridization. J Nanobiotech 6:7. doi:10.1186/1477-3155-6-7

    Article  Google Scholar 

  23. Summers HD, Holton MD, Rees P, Williams PM, Thornton CA (2010) Analysis of quantum dot fluorescence stability in primary blood mononuclear cells. Cytometry A 77:933–939. doi:10.1002/cyto.a.20932

    Article  PubMed  Google Scholar 

  24. Zarkowsky D, Lamoreaux L, Chattopadhyay P, Koup RA, Perfetto SP, Roederer M (2011) Heavy metal contaminants can eliminate quantum dot fluorescence. Cytometry A 79:84–89. doi:10.1002/cyto.a.20986

    Article  PubMed Central  PubMed  Google Scholar 

  25. Zhang Y, He J, Wang PN, Chen JY, Lu ZJ, Lu DR, Guo J, Wang CC, Yang WL (2006) Time-dependent photoluminescence blue shift of the quantum dots in living cells: effect of oxidation by singlet oxygen. J Am Chem Soc 128:13396–13401

    Article  CAS  PubMed  Google Scholar 

  26. Mather IH, Keenan TW (1975) Studies on the structure of milk fat globule membrane. J Membr Biol 21:65–85

    Article  CAS  PubMed  Google Scholar 

  27. Bruno JG, Carrillo MP, Phillips T, Andrews CJ (2010) A novel screening method for competitive FRET-aptamers applied to E. coli assay development. J Fluoresc 20:1211–1223

    Article  CAS  PubMed  Google Scholar 

  28. Carothers JM, Goler JA, Kapoor Y, Lara L, Keasling JD (2010) Selecting RNA aptamers for synthetic biology: investigating magnesium dependence and predicting binding affinity. Nucleic Acids Res 38:2736–2747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    CAS  PubMed  Google Scholar 

  30. Bruno JG, Carrillo MP, Phillips T (2007) Effects of immobilization chemistry on enzyme-linked aptamer assays for Leishmania surface antigens. J Clin Ligand Assay 30:37–43

    Google Scholar 

  31. Gonzalez VM, Martin ME, Moreno M (2013) Aptamers targeting protozoan parasites. In: Bruno JG (ed) Biomedical applications of aptamers. Nova, New York, pp 73–88

    Google Scholar 

  32. Homann M, Lorger M, Engstler M, Zacharias M, Göringer HU (2006) Serum-stable RNA aptamers to an invariant surface domain of live African trypanosomes. Comb Chem High Throughput Screen 9:491–499

    Article  CAS  PubMed  Google Scholar 

  33. Moreno M, González VM (2011) Advances on aptamers targeting Plasmodium and trypanosomatids. Curr Med Chem 18:5003–5010

    Article  CAS  PubMed  Google Scholar 

  34. Moreno M, Rincón E, Piñeiro D, Fernández G, Domingo A, Jiménez-Ruíz A, Salinas M, González VM (2003) Selection of aptamers against KMP-11 using colloidal gold during the SELEX process. Biochem Biophys Res Commun 308:214–218

    Article  CAS  PubMed  Google Scholar 

  35. Ramos E, Moreno M, Martín ME, Soto M, Gonzalez VM (2010) In vitro selection of Leishmania infantum H3-binding ssDNA aptamers. Oligonucleotides 20:207–213. doi:10.1089/oli.2010.0240

    Article  CAS  PubMed  Google Scholar 

  36. Ramos E, Piñeiro D, Soto M, Abanades DR, Martín ME, Salinas M, González VM (2007) A DNA aptamer population specifically detects Leishmania infantum H2A antigen. Lab Invest 87:409–416

    CAS  PubMed  Google Scholar 

  37. Ulrich H, Magdesian MH, Alves MJ, Colli W (2002) In vitro selection of RNA aptamers that bind to cell adhesion receptors of Trypanosoma cruzi and inhibit cell invasion. J Biol Chem 277:20756–20762

    Article  CAS  PubMed  Google Scholar 

  38. Burns JM, Shreffler WG, Benson DR, Ghalib HW, Badaro R, Reed SG (1993) Molecular characterization of a kinesin-related antigen of Leishmania chagasi that detects specific antibody in African and American visceral Leishmaniasis. Proc Natl Acad Sci U S A 90:775–779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Burchardt ER, Kroll W, Gehrmann M, Schroder W (2009) Monoclonal antibody and assay for detecting PIIINP. U.S. Patent No. 7,541,149

  40. Bruno JG, Carrillo MP, Phillips T, Edge A (2011) Discrimination of recombinant from natural human growth hormone using DNA aptamers. J Biomolec Techn 22:27–36

    Google Scholar 

  41. Ivens AC, Peacock CS, Worthey EA et al (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442

    Article  PubMed Central  PubMed  Google Scholar 

  42. Holzer TR, McMaster WR, Forney JD (2006) Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Mol Biochem Parasitol 146:198–218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by Phase 2 SBIR Contract No. W81XWH-10-C-0179. The authors are grateful to Texas State University (San Marcos, TX) and its faculty (Profs. Joseph Koke, Dana Garcia and Shannon Weigum) for advice and guidance related to confocal fluorescence microscopy. Additionally, the authors acknowledge the technical assistance of Alexander Carr at Texas State University for culture of Leishmania promastigotes. Finally, the authors express gratitude to Dr. Edgar Rowton of the Walter Reed Army Institute of Research (WRAIR) for guidance on culturing of Leishmania promastigotes and assistance in obtaining infected and uninfected sandflies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Bruno.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 821 kb)

ESM 2

(DOCX 18.1 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, J.G., Richarte, A.M., Phillips, T. et al. Development of a Fluorescent Enzyme-Linked DNA Aptamer-Magnetic Bead Sandwich Assay and Portable Fluorometer for Sensitive and Rapid Leishmania Detection in Sandflies. J Fluoresc 24, 267–277 (2014). https://doi.org/10.1007/s10895-013-1315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1315-6

Keywords

Navigation