Skip to main content
Log in

A TDDFT Study on the Excited-State Intramolecular Proton Transfer (ESIPT): Excited-State Equilibrium Induced by Electron Density Swing

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

One important issue of current interest is the excited-state equilibrium for some ESITP dyes. However, so far, the information about the driving forces for excited-state equilibrium is very limited. In this work, the time-dependent density functional theory (TDDFT) method was employed to investigate the nature of the excited-state intramolecular proton transfer (ESIPT). The geometric structures, vibrational frequencies, frontier molecular orbitals (MOs) and the potential-energy curves for 1-hydroxy-11H-benzo[b]fluoren-11-one (HHBF) in the ground and the first singlet excited state were calculated. Analysis of the results shows that the intramolecular hydrogen bond of HHBF is strengthened from E to E*. Moreover, it is found that electron density swing between the proton acceptor and donor provides the driving forces for the forward and backward ESIPT, enabling the excited-state equilibrium to be established. Furthermore, we proposed that the photoexcitation and the interchange of position for electron-donating and electron-withdrawing groups are the main reasons for the electron density swing. The potential-energy curves suggest that the forward ESIPT and backward ESIPT may happen on the similar timescale, which is faster than the fluorescence decay of both E* and K* forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu JS, Liu M, Ge JC, Zhang HY, Wang PE (2011) Chem Soc Rev 40:3493–3495

    Google Scholar 

  2. Fang C, Frontier RR, Tran R, Mathies RA (2009) Nature 462:201

    Article  Google Scholar 

  3. Tanner C, Monca C, Leutwyler S (2003) Science 302:1736

    Article  PubMed  CAS  Google Scholar 

  4. Kwon JE, Park SY (2011) Adv Mater 23:3615–3642

    Article  PubMed  CAS  Google Scholar 

  5. Park S, Kwon JE, Seo J, Chung K, Park SY (2009) J Am Chem Soc 131:14043–14049

    Article  PubMed  CAS  Google Scholar 

  6. Tang KC, Chang MJ, Lin TY, Pan HA, Fang TC, Chen KY, Huang WY, Hsu YH, Chou PT (2011) J Am Chem Soc 133:17738–17745

    Article  PubMed  CAS  Google Scholar 

  7. Mutai T, Tomoda H, Ohkawa T, Yabe Y, Araki K (2008) Angew Chem Int Ed 47:9522–9524

    Article  CAS  Google Scholar 

  8. Sakai K, Takahashi S, Kobayashi A, Akutagawa T, Nakamura T, Dosen M, Kata M, Nagashima U (2010) Dalton Trans 39:1989–1995

    Article  PubMed  CAS  Google Scholar 

  9. Lim CK, Seo J, Kim S, Kwon IC, Ahn CH, Park SY (2011) Dyes Pigments 90:284–289

    Article  CAS  Google Scholar 

  10. Nah MK, Rho SG, Kim HK, Kang JG (2007) J Phys Chem A 11:11437–11443

    Article  Google Scholar 

  11. Li X, Qian Y, Wang S, Li S, Yang G (2009) J Phys Chem C 113:3862–3868

    Article  CAS  Google Scholar 

  12. Sun WH, Li S, Hu R, Qian Y, Wang S, Yang G (2009) J Phys Chem A 11:5888

    Article  Google Scholar 

  13. Naama KL, Itay P, Erez Y, Rinat G, Doron S, Dan H (2012) J Phys Chem A 116:85–92

    Article  Google Scholar 

  14. Wu F, Ma L, Zhang S, Geng Y, Lu J, Cheng X (2012) Chem Phys Lett 519:141–144

    Article  Google Scholar 

  15. Park SY, Hyeok J, Hahkjoon K (2011) J Phys Chem C 115:24763

    Article  CAS  Google Scholar 

  16. McCarthy A, Ruth AA (2011) Phys Chem Chem Phys 13:18661–18670

    Article  PubMed  CAS  Google Scholar 

  17. Ramprasad M, Bhattacharyya SP, Abhijit M (2011) J Phys Chem B 115:11840–11851

    Article  Google Scholar 

  18. Hsieh CC, Chou PT, Shih WC, Chuang WT, Chung MW, Lee J, Joo T (2011) J Am Chem Soc 133:2932

    Article  PubMed  CAS  Google Scholar 

  19. Hsieh CC, Jiang CM, Chou PT (2010) Acc Chem Res 43:1364

    Article  PubMed  CAS  Google Scholar 

  20. Li GY, Zhao GJ, Liu YH, Han KL, He GZ (2010) J Comput Chem 31:1759–1765

    Article  PubMed  Google Scholar 

  21. Klymchenko AS, Yushchenko DA, Mely Y (2007) J Photochem Photobiol A 192:93

    Article  CAS  Google Scholar 

  22. Li JN, Pu M, Fang DC, Wei M, He J, Evans DE (2012) J Mol Struct 1015:106–111

    Article  CAS  Google Scholar 

  23. Lin TY, Tang KC, Yang SH, Shen JY, Cheng YM, Pan HA, Chi Y, Chou PT (2012) J Phys Chem A 116:4438–4444

    Article  PubMed  CAS  Google Scholar 

  24. Jayabharathi J, Thanikachalam V, Jayamoorthy K (2012) Mol Biomol Spectrosc 89:168–176

    Article  CAS  Google Scholar 

  25. Gui G, Lan Z, Thiel W (2012) J Am Chem Soc 134:1662–1672

    Article  Google Scholar 

  26. Ando K, Hayashi S, Kato S (2011) Phys Chem Chem Phys 13:11118–11127

    Article  PubMed  CAS  Google Scholar 

  27. Moreno M, Douhal A, Guallar V, Lluch JM, Castono O, Frutos LM (2001) J Phys Chem A 105:3887–3893

    Article  CAS  Google Scholar 

  28. Iijima T, Mouotake A, Shinohara Y, Sato T, Nishimura Y, Arai T (2010) J Phys Chem A 114:1603–1609

    Article  PubMed  CAS  Google Scholar 

  29. Seo J, Kim S, Park SY (2004) J Am Chem Soc 126:11154–11155

    Article  PubMed  CAS  Google Scholar 

  30. Coppo P, Duati M, Kozhevnikov UN, Hofstraat L (2005) Angew Chem Int Ed 44:1806–1810

    Article  CAS  Google Scholar 

  31. Yang YJ, Lowry M, Schonalter CM, Fakayode SO, Escobedo JO, Xu XY, Zhang HT, Jensen TJ, Franczck FR, Warner IM, Strongin RM (2006) J Am Chem Soc 128:14081–14092

    Article  PubMed  CAS  Google Scholar 

  32. Kim S, Seo J, Juang HK, Kim JJ, Park SY (2005) Adv Mater 17:2077–2082

    Article  CAS  Google Scholar 

  33. Chou TP, Martines MZ, Studer SL (1991) J Phys Chem 95:10306

    Article  CAS  Google Scholar 

  34. Tomin VI, Oncul S, Smolarczyk G, Demchenko AP (2007) Chem Phys 342:126

    Article  CAS  Google Scholar 

  35. Golan A, Bravaya KB, Kudirka R, Kostko O, Leone SR, Krylov AI, Ahmed M (2012) Nat Chem 4:323–329

    Article  PubMed  CAS  Google Scholar 

  36. Catalan J, Valle J, Palonar J, Diaz C, Paz JL (1999) J Phys Chem A 103:10921

    Article  CAS  Google Scholar 

  37. Schafer A, Huber C, Ahrichs R (1994) J Chem Phys 100:5829

    Article  Google Scholar 

  38. Han KL, Zhao GJ (2010) Hydorgen bonding and transfer in the excited state. Wiley, Chichester

    Book  Google Scholar 

  39. Zhao GJ, Han KL (2012) Acc Chem Res 45:404–413

    Article  PubMed  CAS  Google Scholar 

  40. Zhao GJ, Han KL, Stang PJ (2009) J Chem Theory Comput 5:1955–1958

    Article  CAS  Google Scholar 

  41. Zhao GJ, Hn KL (2007) J Chem Phys 127:024306

    Article  PubMed  Google Scholar 

  42. Zhao GJ, Han KL (2007) J Phys Chem A 111:9218–9223

    Article  PubMed  CAS  Google Scholar 

  43. Zhao GJ, Han KL (2009) J Phys Chem A 113:14329

    Article  PubMed  CAS  Google Scholar 

  44. Zhao GJ, Han KL (2007) ChemPhysChem 9:1842–1846

    Article  Google Scholar 

  45. Zhao GJ, Liu JY, Zhou LC, Han KL (2007) J Phys Chem B 111:8940

    Article  PubMed  CAS  Google Scholar 

  46. Zhao GJ, Han KL (2008) J Comput Chem 29:2010

    Article  PubMed  CAS  Google Scholar 

  47. Zhao GJ, Chen RK, Sun M, Li GY, Liu J, Gao Y, Han KL, Yang X, Sun LC (2008) Chem Eur J 14:6935–6947

    Article  PubMed  CAS  Google Scholar 

  48. Chai S, Zhao GJ, Song P, Yang SQ, Liu JY, Han KL (2009) Phys Chem Chem Phys 11:4385

    Article  PubMed  CAS  Google Scholar 

  49. Xie L, Chen Y, Wu W, Guo H, Zhao J, Yu X (2012) Dyes Pigments 92:1361–1369

    Article  CAS  Google Scholar 

  50. Fang H, Kim Y (2011) J Phys Chem B 115:15048–15058

    Article  PubMed  CAS  Google Scholar 

  51. Catalan J, Diaz C, Perez P, Paz JL (2006) J Phys Chem A 110:9116–9122

    Article  PubMed  CAS  Google Scholar 

  52. Serrano-Andres L, Merchan M (2006) Chem Phys Lett 418:569–575

    Article  CAS  Google Scholar 

  53. Zhao GJ, Han KL (2008) Biophys J 94:38

  54. Biemann L, Kovalenko SA, Kleinermanns K, Mahrwald R, Markert M, Improta R (2011) J Am Chem Soc 133:19664–19667

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dapeng Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Yang, D., Ren, B. et al. A TDDFT Study on the Excited-State Intramolecular Proton Transfer (ESIPT): Excited-State Equilibrium Induced by Electron Density Swing. J Fluoresc 23, 761–766 (2013). https://doi.org/10.1007/s10895-013-1195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1195-9

Keywords

Navigation