Skip to main content
Log in

A Simple and Sensitive Fluorescence Quenching Method for the Determination of H2O2 Using Rhodamine B and Fe3O4 Nanocatalyst

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In pH 1.99 sodium acetate-HCl buffer solutions at 60 °C, Rhodamine B exhibited a strong fluorescence peak at 584 nm using an excitation wavelength of 548 nm. The fluorescence quenching occurred when Fe3O4 nanoparticles catalyzed H2O2 oxidation of Rhodamine B. Under the chosen conditions, the fluorescence intensity at 584 nm decreased when the concentration of H2O2 increased. The fluorescence quenching intensity is linear with the concentration of H2O2 in the range of 10–200 nmol/L. Thus, a new and simple and sensitive nanocatalytic fluorescence method was proposed for the determination of H2O2 in synthetic sample, with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang YT, Bai SJ, Zhang W (2006) An improved method for determination of trace hydrogen peroxide in water. J Environ Health 23:258–261

    CAS  Google Scholar 

  2. The Minister of Health of the People’s Republic of China (2007) Health standards for the use of food additives (GB 2760-2007). Standards Press of China, Beijing

    Google Scholar 

  3. The Minister of Health of the People’s Republic of China (2009) Disinfection technical guidelines. Peoples Medical Publishing House, Beijing, p 12

    Google Scholar 

  4. Chen YH, Liu Y, Zhou JL, Zhu HW, Xiang LX (2009) Determination of peroxides in food samples by high performance liquid chromatography with variable wavelength detector. Chin J Spec Lab 26:414–417

    CAS  Google Scholar 

  5. Xu JR, Chen ZM (2005) Determination of peroxides in environmental samples by high performance liquid chromatography with fluorescence detection. Chin J Chromatograph 23:366–369

    CAS  Google Scholar 

  6. Toniolo R, Geatt P, Bontempelli G (2001) Amperometric monitoring of hydrogen peroxide in work place atmospheres by electrodes supported on ion-exchangemembranes. J Electroanal Chem 514:123–128

    Article  CAS  Google Scholar 

  7. Campanella LI, Rovers R, Sammartino MP (1998) Hydrogen peroxide determination in pharmaceutical for mulations and cosmetics using a new catalase biosensor. J Pharm Biom Anal 18:105–106

    Article  CAS  Google Scholar 

  8. Lin MJ, Arakawa H, Yamada M (1998) Flow injection chemiluminescent determination of trace amounts of hydrogen peroxide in snow-water using KIO4-K2CO3 system. Anal Chim Acta 37:171–176

    Article  Google Scholar 

  9. Li YZ, Townshend A (1998) Evaluation of the adsorptive immobilization of horseradish peroxidase on PTFE tubing in flow systems for hydrogen peroxide determination using fluorescence detection. Anal Chim Acta 359:149–156

    Article  CAS  Google Scholar 

  10. Wu ZS, Zhang SB, Guo MM (2007) Homogeneous, unmodified gold nanoparticel-based colorimetric assay of hydrogen peroxide. Anal Chim Acta 584:122–128

    Article  PubMed  CAS  Google Scholar 

  11. Jiang ZL, Tang YF, Liang AH, Gong Q (2009) Flame atomic absorption spectrometric determination of H2O2 using (Au)core(Ag)shell nanoparticles. Spectrosc Spect Anal 29:1990–1992

    CAS  Google Scholar 

  12. Liang AH, Jiang ZL, Tao HL (2007) A new and sensitive resonance scattering spectral method for the determination of H2O2 using acridine red. Spectrosc Spect Anal 27:120–122

    CAS  Google Scholar 

  13. Li ZZ, Jiang ZL, Yang G, Lu D, Liu SP (2005) Resonance-scattering spectral determination of H2O2 using rhodamine 6 G association particles. Spectrosc Spect Anal 125:1286–1288

    Google Scholar 

  14. Gao L, Zhuang J, Nie L (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology 2:577–583

    Article  PubMed  CAS  Google Scholar 

  15. Zamocky M, Furtmuller PG (2008) Evolution of catalases from bacteria to humans. Antioxidants Redox Signal 10:1527–1548

    Article  CAS  Google Scholar 

  16. Chang Q, Deng KJ, Zhu LH, Jiang GD, Yu C, Tang HQ (2009) Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst. Microchim Acta 165:299–305

    Article  CAS  Google Scholar 

  17. Wu Q, Rong J, Shan Z, Chen H, Yang WS (2009) Effects of aqueous-organic solvents on peroxidase mimetic activity of Fe3O4 magnetic nanoparticles. Chin J Biotechnol 25:1976–1982

    CAS  Google Scholar 

  18. Li DJ, Hu SY, Zou GL (2003) Progress of the mimetic enzyme of horseradish peroxidase. Amino Biotic Resources 25:43–47

    CAS  Google Scholar 

  19. Tournebize J, Sapin-Minet A, Schneider R, Boudier A, Maincent P, Leroy P (2011) Simple spectrophotocolorimetric method for quantitative determination of gold in nanoparticles. Talanta 83:1780–1783

    Article  PubMed  CAS  Google Scholar 

  20. Jiang ZL, Zhou SM, Liang AH, Kang CY, He XC (2006) Resonance scattering effect of rhodamine dye association nanoparticles and its application to respective determination of trace ClO2 and Cl2. Environ Sci Technol 40:4286–4291

    Article  PubMed  CAS  Google Scholar 

  21. Cui Z, Han C, Li H (2011) Dual-signal fenamithion probe by combining fluorescence with colorimetry based on Rhodamine B modified silver nanoparticles. Analyst 136:1351–1356

    Article  PubMed  CAS  Google Scholar 

  22. Vangala K, Yanney M, Hsiao CT, Wu WW, Shen RF, Zou S, Sygula A, Zhang D (2010) Sensitive carbohydrate detection using surface enhanced Raman tagging. Anal Chem 82:10164–10171

    Article  PubMed  CAS  Google Scholar 

  23. Liu HJ, Peng TY, Peng ZH, Dai K (2007) Photocatalytic degradation mechanism of RB over dye-doped WO3 photocatalysts. J. Wuhan Univ. (Nat. Sci. Ed.) 53: pp 127–132

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 20865002, 20965002, 21075023), Natural Science Foundation of Guangxi (No.0991021Z) and the Research Funds of Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment (No. 0701Z022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiliang Jiang or Hesheng Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Z., Kun, L., Ouyang, H. et al. A Simple and Sensitive Fluorescence Quenching Method for the Determination of H2O2 Using Rhodamine B and Fe3O4 Nanocatalyst. J Fluoresc 21, 2015–2020 (2011). https://doi.org/10.1007/s10895-011-0902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0902-7

Keywords

Navigation