Skip to main content
Log in

An Easy and Efficient Fluorescent Method for Detecting Aldehydes and Its Application in Biotransformation

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Water-soluble aldehydes (acetaldehyde, propionaldehyde) and non-water-soluble aldehydes (butyraldehyde and phenylacetaldehyde) were easily detected by an efficient fluorescent method with 5-aminofluorescein as probe. Under optimal detection conditions, 5-aminofluorescein could selectively respond to aldehydes with high sensitivity in comparison with other carbonyl compounds like ketones and acids. Thus, the proposed method was used to monitor microbial oxidation and succeeded in trapping transiently-produced aldehydes during biotransformation of primary alcohols by Gluconobacter oxydans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Committee on Toxicology and Environmental Health Hazards (1981) Formaldehydes and other aldehydes. National Academy Press, Washington, DC

    Google Scholar 

  2. Patterson RLS, Charlwood BV, MacLeod G, Williams AA (1992) In: Schreier P (ed) Bioflavours: an overview. The Royal Society of Chemistry Press, Cambridge, pp 1–20

    Google Scholar 

  3. Kotzias D, Konidari C, Sparta C (1997) In: Helas G, Slanina J, Steinbrecher R (eds) Biogenic volatile organic carbon compounds in the atmosphere. SPB Academic Publishing, Amsterdam, pp 67–78

    Google Scholar 

  4. Atkinson R (1990) Gas-phase tropospheric chemistry of organic compounds: a review. Atmos Environ 24A:1–41

    CAS  Google Scholar 

  5. Keiko NA, Stepanova LG, Kleptsova EA, Vdovina GP, Odegova TF (2009) Synthesis and antimicrobial activity of new aldehydes and acetals. Pharm Chem J 43:502–504

    Article  CAS  Google Scholar 

  6. Noma Y, Akehi E, Miki N, Asakawa Y (1992) Biotransformation of terpene aldehydes, aromatic aldehydes and related compounds by Dunaliella tertiolecta. Phytochemistry 31:515–517

    Article  CAS  Google Scholar 

  7. Gandolfi R, Ferrara N, Molinari F (2001) An easy and efficient method for the production of carboxylic acids and aldehydes by microbial oxidation of primary alcohols. Tetrahedron Lett 42:513–514

    Article  CAS  Google Scholar 

  8. Asai T (1968) Acetic acid bacteria: classification and biochemical activities. University of Tokyo Press, Tokyo

    Google Scholar 

  9. Svitel J, Sturdik E (1995) n-Propanol conversion to propionic acid by Gluconobacter oxydans. Enzyme Microb Technol 17:546–550

    Article  CAS  Google Scholar 

  10. Molinari F, Villa R, Aragozzini F, Cabella P, Barbeni M (1997) Multi-gram scale production of aliphatic carboxylic acids by oxidation with Acetobacter pasteurianus. J Chem Technol Biotechnol 70:294–298

    Article  CAS  Google Scholar 

  11. Molinari F, Gandolfi R, Aragozzini F, Lèon R, Prazeres DMF (1999) Lyophilised yeasts: easy-to-handle biocatalysts for stereoselective reduction of carbonyls. Enzyme Microb Technol 25:729–735

    Article  CAS  Google Scholar 

  12. Vogel M, Büldt A, Karst U (2000) Hydrazine reagents as derivatizing agents in environmental analysis—a critical review. Fresenius J Anal Chem 366:781–791

    Article  PubMed  CAS  Google Scholar 

  13. Hantzsch A (1882) Ueber die Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniak. Justus Liebigs Ann Chem 215:1–82

    Article  Google Scholar 

  14. Bartos J, Pesez M (1979) Colorimetric and fluorimetric determination of aldehydes and ketones. Pure Appl Chem 51:1803–1814

    Article  Google Scholar 

  15. Büldt A, Karst U (1997) 1-Methyl-1-(2, 4-dinitrophenyl) hydrazine as a new reagent for the HPLC determination of aldehydes. Anal Chem 69:3617–3622

    Article  Google Scholar 

  16. Levin JO, Andersson K, Lindahl R, Nilson CA (1985) Determination of sub-part-per-million levels of formaldehyde in air using active or passive sampling on 2, 4-dinitrophenylhydrazine-coated glass fiber filters and high-performance liquid chromatography. Anal Chem 57:1032–1035

    Article  CAS  Google Scholar 

  17. Van Hoof F, Wittocx A, Van Buggenhout E, Janssens J (1985) Determination of aliphatic aldehydes in waters by high-performance liquid chromatography. Anal Chim Acta 169:419–420

    Article  Google Scholar 

  18. Chiavari G, Bergamini C (1985) High-performance liquid chromatography of carbonyl compounds as 2, 4-dinitrophenylhydrazones with electrochemical detection. J Chromatogr 318:427–432

    Article  CAS  Google Scholar 

  19. Toyooka T, Liu Y-M (1995) Determination of aldehydes by high-performance liquid chromatography with fluorescence detection after labelling with 4-(2-carbazoylpyrrolidin-1-yl)-7-(N, N-dimethylaminosulfonyl) 2, 1, 3-benzoxa- diazole. J Chromatogr A 695:11–18

    Article  CAS  Google Scholar 

  20. Stashenko EE, Ferreira MC, Sequeda LG, Martinez JR, Wong JW (1997) Comparison of extraction methods and detection systems in the gas chromatographic analysis of volatile carbonyl compounds. J Chromatogr A 779:360–369

    Article  PubMed  CAS  Google Scholar 

  21. Nondek L, Milofsky RE, Birks JW (1991) Determination of carbonyl compounds in air by HPLC using on-line analyzed microcartridges, fluorescence and chemiluminescence detection. Chromatographia 32:33–39

    Article  CAS  Google Scholar 

  22. Uzu S, Kanda S, Imai K, Nakashima K, Akiyama S (1990) Fluorogenic reagents: 4-aminosulphonyl-7-hydrazino-2, 1, 3-benzoxadiazole, 4-(N, N-dimethy- -laminosulphonyl)-7-hydrazino-2, 1, 3-benzoxadiazole and 4-hydrazino-7-nitro- -2, 1, 3-benzoxadiazole hydrazine for aldehydes and ketones. Analyst 115:1477–1482

    Article  CAS  Google Scholar 

  23. Konarzycka-Bessler M, Bornscheuer UT (2003) A high-throughput—screening method for determining the synthetic activity of hydrolases. Angew Chem Int Ed 42:1418–1420

    Article  CAS  Google Scholar 

  24. Yang R, Li K, Li N, Zhao FL, Chan WH (2003) 3, 3′, 5, 5′-tetramethyl-N-(9-anthrylmethyl)benzidine: a dual-signaling fluores—cent reagent for optical sensing of aliphatic aldehydes. Anal Chem 75:3908–3914

    Article  PubMed  CAS  Google Scholar 

  25. Bajorek A, Trzebiatowska K, Jedrzejewska B, Pietrzak M, Gawinecki R, Paczkowski J (2004) Developing of fluorescence probes based on stilbazolium salts for monitoring free radical polymerization processes. II. J Fluoresc 14:295–307

    Article  PubMed  CAS  Google Scholar 

  26. Xi P, Xu Z, Liu X, Chen F, Zeng Z, Zhang X, Liu Y (2009) Synthesis, characterization, antioxidant activity and DNA-binding studies of three rare earth (III) complexes with 1-(4-aminoantipyrine)-3-tosylurea ligand. J Fluoresc 19:63–72

    Article  PubMed  CAS  Google Scholar 

  27. Molinari F, Villa R, Manzoni M, Aragozzini F (1995) Aldehyde production by alcohol oxidation with Gluconobacter oxydans. Appl Microbiol Biotechnol 43:989–994

    Article  CAS  Google Scholar 

  28. Munkholm C, Parkinson DR, Walt DR (1990) Intramolecular fluorescence self-quenching of fluoresceinamine. J Am Chem Soc 112:2608–2612

    Article  CAS  Google Scholar 

  29. De S, Das S, Girigoswami A (2005) Environmental effects on the aggregation of some xanthene dyes used in lasers. Spectrochim Acta A 61:1821–1833

    Article  Google Scholar 

  30. Valdes-Aguilera O, Necbees DC (1989) Aggregation phenomena in xanthene dyes. Acc Chem Res 22:171–177

    Article  CAS  Google Scholar 

  31. Baker DC, Frietag-Beeston RA, Whitten DG (1991) Atroplsomer-SpecHlc formatlon of premicellar porphyrin J-aggregates in aqueous surfactant solutions. J Phys Chem 95:4074–4086

    Google Scholar 

  32. Birks JB, Dyson DJ (1963) The relations between the fluorescence and absorption properties of organic molecules. Proc R Soc Lond, A Math Phys Sci 275:135–148

    Article  CAS  Google Scholar 

  33. Tang B, Zhang L, Hu J, Li P, Zhang H, Zhao Y (2004) Indirect determination of superoxide anion radical in the plant of red sage based on vanillin-8-aminoquinoline with fluorescence. Anal Chim Acta 502:125–131

    Article  CAS  Google Scholar 

  34. Houdier S, Perrier S, Defrancq E, Legrand M (2000) A new fluorescent probe for sensitive detection of carbonyl compounds: sensitivity improvement and application to environmental water samples. Anal Chim Acta 412:221–223

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 program, No. 2009CB724703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongzhi Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, Y., Wang, S., Mao, X. et al. An Easy and Efficient Fluorescent Method for Detecting Aldehydes and Its Application in Biotransformation. J Fluoresc 21, 587–594 (2011). https://doi.org/10.1007/s10895-010-0746-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0746-6

Keywords

Navigation