Skip to main content
Log in

Determination of Aluminum Ion with Morin in a Medium Comprised by Ionic Liquid–Water Mixtures

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study we have employed two ionic liquids (ILs) as a new media for the analysis of aluminum in aqueous solutions by spectrofluorimetric method. ILs are liquid salts and they have no measurable vapor pressure up to their thermal decomposition point, >300 °C. This lack of vapor pressure makes these materials highly attractive for many studies as they can be used as clean solvents. Besides they are promising environments for analysis purposes and optical sensor designs. The results revealed that absorption, excitation and emission spectra of the morin–Al complex exhibited considerable changes in moieties. The morin–Al complex was stable at aluminum concentrations below 9.1 mg L−1 in 25% 1-butyl-3-methylimidazolium bromide (IL-I)-water binary mixtures. The higher concentrations of IL (>25% by volume) was not suitable for the complex formation thus in pure IL media the complex formation even at high aluminum concentrations was not observed. The complex stoichiometry ratio of aluminum:morin was 2:1 in IL-I-water binary mixtures. The linear concentration range was 0.045–7.2 mg L−1 with a correlation coefficient of r = 0.9909. The detection limit was found to be 0.036 mg L−1. Cu2+, Mn2+ and PO 3−4 ions exhibited less interfering effect in presence of IL-I and the tolerance limit of Cu enhanced 10 times when compared with ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Levesque L, Mizzen CA, McLahlan DR, Fraser PE (2000) Ligand specific effects on aluminum incorporation and toxicity in neurons and astrocytes. Brain Res 887(2):191–202

    Article  Google Scholar 

  2. Flaten TP (2001) Aluminum as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res Bull 55(2):187–196

    Article  CAS  PubMed  Google Scholar 

  3. Carpani I, Scavetta E, Tonelli D (2004) Spectrophotometric determination of aluminum and nickel. Ann Chim 94:365–372

    Article  CAS  PubMed  Google Scholar 

  4. Guray T, Uysal UD, Gedikbey T, Huseyinli AA (2005) 2, 2 ′, 3, 4-Tetrahydroxy-3 ′-sulpho-5 ′-nitroazobenzene for spectrophotometric determination of aluminum in pharmaceutical suspensions and granite. Anal Chim Acta 545(1):107–112

    Article  CAS  Google Scholar 

  5. Brach-Papa C, Coulomb B, Théraulaz F, Van Loot P, Boudenne JL, Branger C, Margaillan A (2004) Fluorimetric determination of aluminum in water by sequential injection through column extraction. Anal Bioanal Chem 378(6):1652–1658

    Article  CAS  PubMed  Google Scholar 

  6. Sing Muk N, Narayanaswamy R (2006) Fluorescence sensor using a molecularly imprinted polymer as a recognition receptor for the detection of aluminum ions in aqueous media. Anal Bioanal Chem 386(5):1235–1244

    Article  Google Scholar 

  7. Narin I, Tuzen M, Soylak M (2004) Aluminum determination in environmental samples by graphite furnace atomic absorption spectrometry after solid phase extraction on amberlite xad-1180/pyrocatechol violet chelating resin. Talanta 63(2):411–418

    Article  CAS  PubMed  Google Scholar 

  8. Recknagel S, Rösick U, Brätter P (1994) Determination of aluminum in infusion solutions by inductively coupled plasma atomic emission spectrometry—a critical comparison of different emission lines. J Anal At Spectrom 9:1293–1297

    Article  CAS  Google Scholar 

  9. Ginting S, Wilkens S, Johnson BB (2000) Comparison of catechol violet and aluminon for the determination of “reactive” aluminum in the presence of organic acids. Aust J Soil Res 38(4):807–822

    Article  CAS  Google Scholar 

  10. Madrakian T, Afkhami A, Borazjani M, Bahram M (2005) Partial least-squares regression for the simultaneous determination of aluminum and beryllium in geochemical samples using xylenol orange. Spectrochim Acta A Mol Biomol Spectrosc 61(13–14):2988–2994

    Article  CAS  PubMed  Google Scholar 

  11. Bloom PR, Weaver RM, McBride MB (1978) The spectrophotometric and fluorometric determination of aluminum with 8-hydroxyquinoline and butyl acetate extraction. Soil Sci Soc Am J 42:713–716

    Article  CAS  Google Scholar 

  12. Ying-Quan Z, Lin Z, Jun-Yi L (1983) Spectrophotometric determination of aluminum with chlorophosphonazo I. Talanta 30:291–293

    Article  CAS  PubMed  Google Scholar 

  13. Lian H, Kang Y, Bi S, Yasin A, Shao D, Chen Y, Dai L, Tian L (2003) Morin applied in speciation of aluminum in natural waters and biological samples by reversed-phase high-performance liquid chromatography with fluorescence detection. Anal Bioanal Chem 376:542–548

    Article  CAS  PubMed  Google Scholar 

  14. Al-Kindy S, Badía R, Díaz-García ME (2002) Fluorimetric monitoring of molecular imprinted polymer recognition events for aluminum. Anal Lett 35(11):1763–1774

    Article  CAS  Google Scholar 

  15. Gupta VK, Jain AK, Maheshwari G (2007) Aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix. Talanta 72(4):1469–1473

    Article  CAS  PubMed  Google Scholar 

  16. Septhum C, Rattanaphani V, Rattanaphani S (2007) UV–Vis spectroscopic study of natural dyes with aluminum as a mordant. J Sci Technol 4(1):91–97

    Google Scholar 

  17. Lian H, Kang Y, Bi S, Yasin A, Shao D, Chen Y, Dai L, Tian L (2003) Morin applied in speciation of aluminum in natural waters and biological samples by reversed-phase high-performance liquid chromatography with fluorescence detection. Anal Bioanal Chem 376(4):542–548

    Article  CAS  PubMed  Google Scholar 

  18. Alonso-Mateos A, Almendral-Parra MJ, Curto-Serrano Y, Rodríguez-Martín FJ (2008) On-line monitoring of aluminum in drinking water with fluorimetric detection. J Fluoresc 18(1):183–192

    Article  CAS  PubMed  Google Scholar 

  19. Garcia EA, Fernandez GR, Diaz-Garcia ME (2005) Tris(bipyridine)ruthenium(II) doped sol-gel materials for oxygen recognition in organic solvents. Microporous Mesoporous Mater 77(2,3):235–239

    Article  CAS  Google Scholar 

  20. Schubert U, Husing N (2000) Synthesis of Inorganic Materials. Wiley–VCH, Weinheim

    Google Scholar 

  21. Merrigan TL, Bates ED, Dorman SC, Davis Jr JH (2000) New fluorous ionic liquids function as surfactants in conventional room-temperature ionic liquids. Chem Commun 2051–2052. doi:10.1039/b005418f

  22. Cammarata L, Kazarian SG, Salterb PA, Welton T (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 3:5192–5200

    Article  CAS  Google Scholar 

  23. Miskolczy Z, Sebök-Nagy K, Biczok L, Göktürk S (2004) Aggregation and micelle formation of ionic liquids in aqueous solution. Chem Phys Lett 400:296–300

    Article  CAS  Google Scholar 

  24. Anthony JL, Crosthwaite JM, Hert DG, Aki SNVK, Maginn EJ, Brennecke JF (2002) In: Rogers RD, Seddon KR (eds) Phase Equilibria of Gases and Liquids with 1-n-butyl-3-methylimidazolium tetrafluoroborate, Ionic Liquids: Industrial Applications to Green Chemistry, ACS Symposium Series, 818, pp 260–269

  25. Anderson JL, Armstrong DW, Wei G-T (2006) Ionic liquids in analytical chemistry. Anal Chem 78:2893–2902

    CAS  Google Scholar 

  26. Liu J, Jeonsson J, Jiang G (2005) Application of ionic liquids in analytical chemistry. Trends Anal Chem 24(1):20–27

    Article  Google Scholar 

  27. Olivier-Bourbigou H, Manga L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A Gen 373(1–2):1–56

    Article  CAS  Google Scholar 

  28. Safavi A, Abdollahi H, Maleki N, Zeinali S (2008) Interaction of anionic dyes and cationic surfactants with ionic liquid character. J Colloid Interface Sci 322(1):274–280

    Article  CAS  PubMed  Google Scholar 

  29. Diaz Garcia ME, Sanz-Medel A (1986) Dye-surfactant interaction: a review. Talanta 33:255–264

    Article  CAS  Google Scholar 

  30. Ou G, Zhu M, She J, Yuan Y (2006) Ionic liquid buffers: a new class of chemicals with potential for controlling pH in non-aqueous media. Chem Commun (44):4626–4628. doi:10.1039/b611810k

  31. Long X, Bi S, Ni H, Tao X, Gan N (2004) Resonance Rayleigh scattering determination of trace amounts of Al in natural waters and biological samples based on the formation of an Al(III)-morin-surfactant complex. Anal Chim Acta 501(1):89–97

    Article  CAS  Google Scholar 

  32. Oter O, Ertekin K, Derinkuyu S (2008) Ratiometric sensing of CO2 in ionic liquid modified ethyl cellulose matrix. Talanta 76(3):557–563

    Article  CAS  PubMed  Google Scholar 

  33. Gutierrez AC, Gehlen MH (2002) Time resolved fluorescence spectroscopy of quercetin and morin complexes with Al3+. Spectrochim Acta Part A 58:83–89

    Article  Google Scholar 

  34. Miller JN, Miller JC (2000) Statistics and chemometrics of analytical chemistry, 4th edn. Essex, Pearson Education Limited, England

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Oter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oter, O., Aydogdu, S. Determination of Aluminum Ion with Morin in a Medium Comprised by Ionic Liquid–Water Mixtures. J Fluoresc 21, 43–50 (2011). https://doi.org/10.1007/s10895-010-0688-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0688-z

Keywords

Navigation